소의 초기 배 발생단계별 Telomeric DNA 함량 및 Telomerase Activity 분석

Telomeric Dynamics and Telomerase Activity in Early Bovine Embryos

  • 정예화 (진주산업대학교 동물생명과학과) ;
  • 이수희 (진주산업대학교 동물생명과학과) ;
  • 조상래 (국립축산과학원 가축유전자원시험장) ;
  • 공일근 (경상대학교 응용생명과학부) ;
  • 조재동 (엘르메디산부인과) ;
  • 손시환 (진주산업대학교 동물생명과학과)
  • Jung, Yei-Hwa (Department of Animal Science & Biotechnology, Jinju National University) ;
  • Lee, Soo-Hee (Department of Animal Science & Biotechnology, Jinju National University) ;
  • Cho, Sang-Rae (Animal Genetic Resources Station, National Institute of Animal Science) ;
  • Kong, Il-Keun (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Cho, Jae-Dong (Ellemedi Obstetrics and Gynecology) ;
  • Sohn, Sea-Hwan (Department of Animal Science & Biotechnology, Jinju National University)
  • 발행 : 2009.06.30

초록

목 적: 소 수정란의 telomeric DNA 함량 및 텔로머레이스 활성도 (telomerase activity)를 분석하여 초기 배아형성과정에서 텔로미어의 변화 양상을 규명하고자 하였다. 연구방법: 소의 초기 배 발생단계별 체외수정란을 대상으로 양적형광보인법 (Q-FISH)을 이용한 telomeric DNA의 함량 분석과 Telomeric Repeat Amplification Protocol (TRAP)로서 텔로머레이스 활성도를 분석하였다. 결 과: 소의 초기 수정란의 telomeric DNA 함유율은 발생과정이 진행됨에 따라 유의적인 양적 증가를 나타내었다. 배반포배의 질 (quality)에 따른 텔로미어의 함량 차이는 나타나지 않았다. 소 수정란의 8 세포기, 상실배기 및 배반포기의 모든 초기 배 단계에서 텔로머레이스 활성도를 보였으며, 상실배에서 증가하여 배반포배에서 가장 강한 활성도를 나타내었다. 결 론: 소의 초기 배아형성과정이 진행되면서 텔로미어의 함량 및 텔로머레이스 활성도는 점진적으로 증가하고 이들 간에는 정 (positive)의 상관관계를 가진다. Telomeric DNA 함량의 증가를 유지하기 위하여 텔로머레이스의 활성화는 필수적인 것으로 보여진다. 배반포기 배아에서 높은 텔로미어 함량과 강한 텔로머레이스 활성도는 이 시기가 배발생 및 분화과정 중 가장 세포적 활성도가 높은 시점임을 의미하는 것으로 사료된다.

Objective: This study was carried out to analyze the amount of telomeric DNA and telomerase activity in early bovine embryos. Methods: The amount of telomeric DNA in early bovine embryos at the 8 cell, morula and blastocyst stages was analyzed by Quantitative Fluorescence In Situ Hybridization (Q-FISH) technique using a bovine telomeric DNA probe. Telomerase activity was analyzed by Telomeric Repeat Amplification Protocol (TRAP assay). Results: The relative amount of telomeric DNA in early bovine embryos was gradually increased from 8 cell to blastocyst stage. It was not significantly associated with the grade of embryo quality. While telomerase activity was detected in the early bovine embryos at these stages, it significantly increased at morula stage and showed maximum activity at the blastocyst stage. Conclusion: The amount of telomeric DNA and the telomerase activity of bovine embryos increase during the progression of early embryogenesis, suggesting a positive correlation between telomeric DNA and telomerase activity. The telomerase activity seems to increase to maintain the levels of telomeric DNA through embryo development which are required for extensive cell division.

키워드

참고문헌

  1. Zakian VA. Telomeres: beginning to understand the end. Science 1995; 270: 1601-7 https://doi.org/10.1126/science.270.5242.1601
  2. Blackburn EH. Structure and function of telomere. Nature 1991; 350: 569-73 https://doi.org/10.1038/350569a0
  3. Shay JW. At the end of the millennium, a view of the end. Science 1999; 288: 1377-9 https://doi.org/10.1126/science.288.5470.1377
  4. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43: 405-13 https://doi.org/10.1016/0092-8674(85)90170-9
  5. Faragher RG, Kipling D. How might replicative senescence contribute to human ageing? Bioassays 1998; 20: 985-91 https://doi.org/10.1002/(SICI)1521-1878(199812)20:12<985::AID-BIES4>3.0.CO;2-A
  6. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 1996; 18(2): 173-9 https://doi.org/10.1002/(SICI)1520-6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3
  7. Scott BC, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR. Protein composition of catalytically active human telomerase from immortal cells. Science 2007; 315: 1850 https://doi.org/10.1126/science.1138596
  8. Harley CB. Telomere loss: mitotic clock or genetic time bomb? Mutat Res 1991; 256(2-6): 271-82 https://doi.org/10.1016/0921-8734(91)90018-7
  9. Deng Y, Chang S. Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab Invest 2007; 87(11):1071-6 https://doi.org/10.1038/labinvest.3700673
  10. Eisenhauer KM, Gerstein RM, Chiu CP, Conti M, Hsueh AJ. Telomerase activity in female and male rat germ cells undergoing meiosis and in early embryos. Biol Reprod 1997; 5:1120-5
  11. Achi MV, Ravindranath N, Dym M. Telomere length in male germ cells is inversely correlated with telomerase activity. Biol Reprod 2000; 63(2): 591-8 https://doi.org/10.1095/biolreprod63.2.591
  12. Lee HW, Blasco MA, Gottlieb GJ. Horner JW II, DePinho RA. Essential role of mouse telomerase in highly proliferative organs. Nature 1998; 392: 569-74 https://doi.org/10.1038/33345
  13. Liu L, Blasco MA, Trimarchi JR, Keefe DL. An essential role for functional telomeres in mouse germ cells during fertilization and early development. Dev Biol 2002; 249: 74-84 https://doi.org/10.1006/dbio.2002.0735
  14. Rodr$\acute{i}$guez S, Goyanes V, Segrelles E, Blasco M, Gos$\acute{a}$lvez J, Fern$\acute{a}$ndez JL. Critically short telomeres are associated with sperm DNA fragmentation. Fertil Steril 2005; 84(4): 843-5 https://doi.org/10.1016/j.fertnstert.2005.05.014
  15. Cohen J, Scott R, Alikani M, Schimmel T, Munne S, Levron J, et al. Ooplasmic transfer in mature human oocytes. Mol Hum Reprod 1998; 3: 269-80
  16. Betts DH, King WA. Telomerase activity and telomere detection during early bovine development. Dev Genet 1999; 25:397-403 https://doi.org/10.1002/(SICI)1520-6408(1999)25:4<397::AID-DVG13>3.0.CO;2-J
  17. Schaetzlein S, Lucas-Hahn A, Lemme E, Kues WA, Dorsch M, Manns MP, et al. Telomere length is reset during early mammalian embryogenesis. Proc Natl Acad Sci USA 2004;101(21): 8034-8 https://doi.org/10.1073/pnas.0402400101
  18. Xu J, Yang X. Telomerase activity in bovine embryos during early development. Biol Reprod 2000; 63: 1124-8 https://doi.org/10.1095/biolreprod63.4.1124
  19. Brackett BG, Oliphant G. Capacitation of rabbit spermatozoa in vitro. Biol Reprod 1975; 12(2): 260-74 https://doi.org/10.1095/biolreprod12.2.260
  20. Rosenkrans CF, Zeng GQ, McNamara GT, Schoff PK, First NL. Development of bovine embryos in vitro as affected by energy substrates. Biol Reprod 1993; 49: 459-62 https://doi.org/10.1095/biolreprod49.3.459
  21. 손시환, 박충생, 송상현. 염색체 분석 기법에 의한 소체외수정란의 성 조절. 한국가축번식학회지 1996; 20(2):179-90
  22. Han MS, Cho EJ, Ha HB, Park HS, Sohn SH. Sex determination of in vitro fertilized bovine embryos by fluorescence in situ hybridization technique. Reprod Dev Biol 2004; 28(2):133-7
  23. 손시환, Multani AS, Pathak S. 소, 돼지 염색체의 telomeric DNA 분포 양상. 동물자원과학회지 2004; 46(4): 547-54
  24. Kim NW, Wu F. Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res 1997; 25(13):2595-7 https://doi.org/10.1093/nar/25.13.2595
  25. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Animal Biochem 1976; 72: 248-54 https://doi.org/10.1016/0003-2697(76)90527-3
  26. Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril 2004; 81: 551-5 https://doi.org/10.1016/j.fertnstert.2003.07.023
  27. Dokras A, Sargent IL, Barlow DH. Human blastocyst grading:an indicator of developmental potential? Hum Reprod 1993;8(12): 2119-27
  28. 강민영, 한명숙, 이상찬, 김종흥, 손시환. 마우스 수정란의 초기 배 발생단계별 telomeric DNA의 양적 분석과 telomerase 활성도 분석. Reprod Dev Biol 2005; 29(1):1-7
  29. 최덕순, 조창연, 손시환. 소의 생리적 특성에 따른 세포내 텔로미어 함량과 텔로머레이스 활성도 분석. 한국동물자원과학회지 2008; 50(4): 445-56
  30. Bickenbach JR, Vormwald-Dogan V, Bachor C, Bleuel K, Schnapp G, Boukamp P. Telomerase is not an epidermal stem cell marker and is downregulated by calcium. J Invest Dermatol 1998; 111: 1045-52 https://doi.org/10.1046/j.1523-1747.1998.00420.x