DOI QR코드

DOI QR Code

Load-deflection characteristics and plastic deformation of NiTi closed coil springs

수종의 니켈-티타늄 폐쇄형 코일 스프링의 하중-변위 특성 및 소성 변형 비교

  • Son, Ah-Young (Department of Orthodontics, School of Dentistry, Chosun University) ;
  • Lim, Sung-Hoon (Department of Orthodontics, School of Dentistry, Chosun University)
  • 손아영 (조선대학교 치의학전문대학원 교정학교실) ;
  • 임성훈 (조선대학교 치의학전문대학원 교정학교실)
  • Received : 2009.03.06
  • Accepted : 2009.08.23
  • Published : 2009.10.30

Abstract

Objective: NiTi closed coil springs were reported to have relatively constant unloading forces. However, the characteristics of NiTi closed coil springs from various manufacturers have not been elucidated. The purpose of this study was to compare load-deflection characteristics of various NiTi closed coil springs and to find out the optimal range of extension. Methods: Seven kinds of NiTi closed coil springs from five manufacturers were tested. Load deflection curves were obtained at extension ranges from 2 mm to 30 mm. Also, springs were kept extended during a 4 week period, and then load deflection curves were obtained again. Results: Sentalloy (Tomy) and Jinsung blue (Jinsung) showed superelasticity in every extension ranges tested and showed plastic deformation of less than 1 mm. Ni-Ti (Ormco) showed superelasticity only after the springs were extended at or more than 10 mm, thereby meaning that clinicians should extend these springs at or more than 10 mm to utilize the superelasticity. Orthonol (RMO) and Nitanium (Ortho Organizers) did not show superelasticity. After 4 weeks of extension, all springs showed plastic deformation less than 1 mm when the extension was at or under 25 mm. Conclusions: The superelastic behavior of NiTi closed springs were different among various NiTi spring products, and some NiTi closed springs failed to show superelasticity.

폐쇄형 니켈-티타늄 코일 스프링은 탈부하 과정에서 힘이 거의 일정하게 유지되는 초탄성을 보이는 것으로 알려져 있으나, 각 제조사에 따른 니켈-티타늄 스프링의 실제 특성에 대한 보고는 부족하다. 따라서 본 연구에서는 수종의 폐쇄형 니켈-티타늄 코일 스프링들의 하중-변위 특성과 소성 변형에 대해 비교하고 임상적으로 적용 가능한 신장 범위에 대해서 알아보고자 하였다. 다섯 개 제조회사에서 생산된 일곱 종의 폐쇄형 니켈-티타늄 코일 스프링을 각 종류별로 2 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm로 신장시켜 하중-변위 곡선을 얻은 후 같은 길이로 4주간 유지시킨 후 다시 하중-변위 곡선을 얻었다. 실험 결과 Sentalloy (Tomy, Tokyo, Japan), Jinsung (Jinsung, Seoul, Korea)은 모든 범위에서 초탄성을 나타내며 영구변형도 1 mm 이하로 작아 가장 바람직한 물성을 보였다. 반면 Ni-Ti (Ormco, Orange, CA, USA)는 10 mm부터 초탄성 구간을 보였는데, 이는 이러한 스프링을 적용 시에는 10 mm 이상 신장시켜야 초탄성 성질을 활용할 수 있다는 것을 의미한다. Orthonol (RMO, Denver, CO, USA)과 Nitanium (Ortho Oganizers, San Marcos, CA, USA)은 초탄성을 보이지 않았다. 4주 동안 신장 후의 소성 변형 정도를 측정한 결과 25 mm 이내의 신장 범위에서는 1 mm 이하의 소성 변형만이 나타났다. 폐쇄형 니켈-티타늄 코일 스프링의 초탄성 성질은 제조사에 따라 다양하게 나타났으므로, 임상 적용 시 이를 고려하는 것이 바람직하다.

Keywords

References

  1. Kusy RP. A review of contemporary archwires: their properties and characteristics. Angle Orthod 1997;67:197-207
  2. Andreasen G, Heilman H, Krell D. Stiffness changes in thermodynamic Nitinol with increasing temperature. Angle Orthod 1985;55:120-6
  3. Santoro M, Beshers DN. Nickel-titanium alloys: stress-related temperature transitional range. Am J Orthod Dentofacial Orthop 2000;118:685-92 https://doi.org/10.1067/mod.2000.98113
  4. Kim YB. A reassessment of orthodontic wire selection. J Korean Found Gnathol Orthod Res 1995;2:151-97
  5. Drake SR, Wayne DM, Powers JM, Asgar K. Mechanical properties of orthodontic wires in tension, bending, and torsion. Am J Orthod 1982;82:206-10 https://doi.org/10.1016/0002-9416(82)90140-3
  6. Khier SE, Brantley WA, Fournelle RA. Bending properties of superelastic and nonsuperelastic nickel-titinium orthodontic wires. Am J Orthod Dentofacial Orthop 1991;99:310-8 https://doi.org/10.1016/0889-5406(91)70013-M
  7. Cha BK, Choi DS, Lee NK. Simplification of orthodontic treatment process utilizing superelastic Nickel-titanium archwire:one wire system. Korean J Clin Orthod 2005;4:82-9
  8. Miura F, Mogi M, Ohura Y, Karibe M. The super-elastic Japanese NiTi alloy wire for use in orthodontics. Part III. Studies on the Japanese NiTi alloy coil springs. Am J Orthod Dentofacial Orthop 1988;94:89-96 https://doi.org/10.1016/0889-5406(88)90356-3
  9. Nattrass C, Ireland AJ, Sherriff M. The effect of environmental factors on elastomeric chain and nickel titanium coil springs. Eur J Orthod 1998;20:169-76 https://doi.org/10.1093/ejo/20.2.169
  10. Dixon V, Read MJ, O'Brien KD, Worthington HV, Mandall NA. A randomized clinical trial to compare three methods of orthodontic space closure. J Orthod 2002;29:31-6 https://doi.org/10.1093/ortho/29.1.31
  11. Proffit WR, Fields HW. Mechanical principles in orthodontic force control. In: Proffit WR editor. Contemporary orthodontics. 3rd ed. St. Louis: Mosby; 2000. p. 329-30
  12. Shape memory alloy's development committee. How to use shape memory alloy. In: Shapr memory alloy's development committee editor. Shape memory alloy and its application. Seoul: Kijunyonkusa; 1991. p. 37
  13. Storey E, Smith R. Force in orthodontics and its relation to tooth movement. Aust J Dent 1952;56:11-8
  14. Kim DS, Kim YJ, Choi JH, Han JH. A study of Korean Norm about tooth size and ratio in Korean adults with normal occlusion. Korean J Orthod 2001;31:505-15
  15. Heo CH, Sung JH, Kwon OW, Kyung HM. Elastic force degradation of synthetic elastomeric chain. Korean J Orthod 2003;33:371-80
  16. Schneevoigt R, Haase A, Eckardt Vl, Harzer W, Bourauel C. Laboratory analysis of superelastic NiTi compression springs. Med Eng Phys 1999;21:119-25 https://doi.org/10.1016/S1350-4533(99)00034-X
  17. Burstone CJ, Qin B, Morton JY. Chinese NiTi wire--a new orthodontic alloy. Am J Orthod 1985;87:445-52 https://doi.org/10.1016/0002-9416(85)90083-1
  18. Chang MH, Lim BS, Lee YK, Kim CW, Rhee SH, Yang HC. Force degradation behavior and plastic deformation of NiTi closed coil springs. J Korean Res Soc Dent Mater 2004;31:133-41