Application of Reused Powdered Waste Containing Aluminum Oxide on the Treatment of Cr(VI)

6가 크롬 처리를 위한 알루미늄 산화물을 함유한 재생 분말 폐기물의 적용

  • Lim, Jae-Woo (Department of Environmental Engineering, Kwangwoon University) ;
  • Kim, Tae-Hwan (Department of Environmental Engineering, Kwangwoon University) ;
  • Kang, Hyung-Sik (Department of Environmental Engineering, Kwangwoon University) ;
  • Kim, Do-Son (Department of Environmental Engineering, Kwangwoon University) ;
  • Kim, Han-Seon (Department of Environmental Engineering, Kwangwoon University) ;
  • Cho, Seok-Hee (Department of Environmental Engineering, Kwangwoon University) ;
  • Yang, Jae-Kyu (Division of General Education, Kwangwoon University) ;
  • Chang, Yoon-Young (Department of Environmental Engineering, Kwangwoon University)
  • Received : 2009.01.30
  • Accepted : 2009.03.13
  • Published : 2009.03.31

Abstract

In this research, the removal capacity of Cr(VI) by the reused powdered wastes (RPW) containing aluminium oxides was studied. As a pre-treatment process for the preparation of calcined wastes, calcination was conducted at $550^{\circ}C$ to remove organic fraction in the raw wastes. In order to study the adsorption trend of Cr(VI) ions from aqueous solutions, the pH-edge adsorption, adsorption kinetic and adsorption isotherm were investigated using a batch reactor in the presence of four different background electrolytes($NO_3\;^-,\;CO_3\;^{2-},\;SO_4\;^{2-},\;PO_4\;^{3-}$). Cr(VI) adsorption was greatly reduced in the presence of $SO_4\;^{2-}$ and $PO_4\;^{3-}$ over the entire pH range. Meanwhile the inhibition effect by $NO_3\;^-$ and $CO_3\;^{2-}$ was relatively lower than that by $SO_4\;^{2-}$ and $PO_4\;^{3-}$. Cr(VI) adsorption was maximum around pH 4.5 in the presence of $NO_3\;^-$ and $CO_3\;^{2-}$. As the concentration of background electrolytes increased, Cr(VI) adsorption decreased. This result mightly suggests that adsorption between the surface of RPW and Cr(VI) occurs through outer-sphere complex. Cr(VI) adsorption onto the RPW was well described by second-order kinetics. From the Langmuir isotherm at initial pH 3, the maximum adsorbed amount of Cr(VI) onto the RPW was 11.1, 10, 3.3, 5 mg/g in the presence of $NO_3\;^-,\;CO_3\;^{2-},\;SO_4\;^{2-}$, and $PO_4\;^{3-}$, respectively.

본 연구에서는 알루미늄 산화물을 함유한 재생 분말 폐기물에 의한 Cr(VI)의 제거특성을 조사하였다. 가공하지 않은 폐기물의 유기물을 제거하기 위해 $550^{\circ}C$에서 소성하여 재생 분말 폐기물(RPW)을 준비하였다. 수용액 상에서 Cr(VI)의 흡착 경향에 관한 연구를 위해 회분식 반응장치를 이용하여 pH 변화, 흡착 속도, 등온 흡착 실험을 4가지 다른 이온세기 화학종($NO_3\;^-,\;CO_3\;^{2-},\;SO_4\;^{2-},\;PO_4\;^{3-}$)의 존재 하에서 수행하였다. $SO_4\;^{2-}$$PO_4\;^{3-}$가 존재할 때는 전체 pH 범위에서 크롬의 흡착이 크게 감소하였다. 반면 $NO_3\;^-$$CO_3\;^{2-}$에 의한 흡착 방해의 영향은 $SO_4\;^{2-}$$PO_4\;^{3-}$에 의한 것보다 상대적으로 낮았다. $NO_3\;^-$$CO_3\;^{2-}$의 존재 하에 Cr(VI) 흡착은 pH 4.5에서 최대로 나타났다. 이온세기 화학종의 농도가 증가함에 따라 Cr(VI)의 흡착은 감소하였다. 이러한 결과를 토대로 할때 RPW와 Cr(VI) 사이의 흡착은 외부배위권 착물을 통하여 발생되는 것으로 사료된다. RPW에 의한 Cr(VI)의 흡착은 2차 반응으로 잘 표현되었다. Langmuir 등온흡착식을 이용하여 pH 3에서 RPW에 의한 Cr(VI)의 최대 흡착량을 구한결과 $NO_3\;^-,\;CO_3\;^{2-},\;SO_4\;^{2-},\;PO_4\;^{3-}$가 이온세기 화학종으로 있을 때 각각 11.1, 10, 3.33, 5 mg/g으로 얻어졌다.

Keywords

References

  1. Saner, G., Chromium in Nutrition and Disease, Alan R Liss Inc., New York(1980)
  2. Anderson, R. A., “Essentiality of chromium in humans,” Sci. Total Environ., 86, 75-81(1989) https://doi.org/10.1016/0048-9697(89)90196-4
  3. S. Canali, F. Tittarelli, P. Sequi, Chromium environmental issues, FrancoAngeli, Milano(1997)
  4. Goyer, R. A., Mehlman, M. A., Toxicology of Trace Elements, John Wiley & Sons Inc., New York(1977)
  5. Carson, B. L., Ellis, H. V., McCann, J. L., Toxicology and Biological Monitoring of Metals in Humans, Lewis Publishers Inc., Chelsea, MI(USA), (1986)
  6. 채승헌, “이온교환공정을 이용한 지하수중의 크롬제거,” 대전대학교 석사학위논문(2002)
  7. De Flora, S., Bagnasco, M., Serra, D., Zanacchi, P., “Genotoxicity of chromium compounds : A review,” Mutation Res., 238(2), 99-172(1990) https://doi.org/10.1016/0165-1110(90)90007-X
  8. Snow E. T., “Metal carcinogenesis : Mechanistic implications,” Pharmacology & Therapeutics, 53(1), 31-65(1992) https://doi.org/10.1016/0163-7258(92)90043-Y
  9. 전철민, 문상호, 안주성, 김역식, 원종호, 안경환, “대전산업단지 지하수의 6가 크롬 오염 및 확산 평가,” 자원환경지질, 40(4), 403-418(2007)
  10. $\acute{A}$lvarez-Ayuso, E., Garc$\acute{i}$a-S$\acute{a}$nchez, A., Querol, X., “Adsorption of Cr(VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide,” J. Hazard. Mater., 142, 191-198(2007) https://doi.org/10.1016/j.jhazmat.2006.08.004
  11. Patterson, J. W., Industrial Wastewater Treatment Technology second ed., Butterwoth, Boston(1985)
  12. Schnoor, J. L., Environmental modeling: fate and transport of pollutants in water, air and soil, John Wiley & Sons, New York(1996)
  13. Smith, E., Ghiassi, K., “Chromate removal by an iron sorbent: mechanism and modeling,” Water Environ. Res., 78, 84-93(2006) https://doi.org/10.2175/106143005X84558
  14. Dupont, L., Guillon, E., “Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran,” Environ. Sci. Technol., 37, 4235-4241(2003) https://doi.org/10.1021/es0342345
  15. Basso, M. C., Cerrella, E. G., Cukierman, A. L., “Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater,” Ind. Eng. Chem. Res., 41, 3580-3585(2002) https://doi.org/10.1021/ie020023h
  16. Kratochvil, D., Pimentel, P., and Volesky, B., “Removal of trivalent and hexavalent chromuim by seaweed biosorbent,” Environ. Sci. Technol., 32, 2693-2698(1998) https://doi.org/10.1021/es971073u
  17. Zghida, H., Baouab, M. H. V., Gauthier, R., “Sorption of chromium oxy-anions onto cationized lignocellulosic material,” J. Appl. Polym. Sci., 87, 1660-1665(2003) https://doi.org/10.1002/app.11596
  18. McBride, M. B., Environmental Chemistry of Soils, Oxford University Press Inc., New York(1994)
  19. Mondal, P., Majumder, C. B., Mohanty, B., “Laboratory based approaches for arsenic remediation from contaminated water: Recent developments,” J. Hazard. Mater., B137, 464-479(2006) https://doi.org/10.1016/j.jhazmat.2006.02.023
  20. 박연종, 양재규, 최상일, “재이용한 산업부산물에 의한 비소(V) 이온 흡착능 평가,” 지하수토양환경, 12(4), 78-85 (2007)
  21. 박연종, “폐무정형 알루미늄산화물을 이용한 지하수내 비소 및 양이온 중금속 흡착제거 특성,” 광운대학교 박사학위논문(2008)
  22. Davis, J. A., Leckie, J. O., “Surface ionization and complexation at the oxide/water interface. II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions,” J. Colloid Interface Sci., 67, 90-107(1978) https://doi.org/10.1016/0021-9797(78)90217-5
  23. Zachara, J. M., Girvin, D. C., Schmidt, R. L., Resch, C. T., “Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions,” Environ. Sci. Technol., 21, 589-594(1987) https://doi.org/10.1021/es00160a010
  24. Fumihiko Ogata, Naohito Kawasaki, Takeo Nakamura, Seiki Tanada, “Removal of arsenious ion by calcined aluminum oxyhydroxide (boehmite),” J. Colloid Interface Sci., 300, 88-93(2006) https://doi.org/10.1016/j.jcis.2006.03.026