Vortex Screen장치를 이용한 강우유출수내 미세입자 처리특성 분석

Performance Evaluation of Vortex Screen for Treatment of Fine Particles in Storm Runoff

  • 이준호 (충주대학교 환경공학부) ;
  • 정윤희 (충주대학교 환경공학부) ;
  • 방기웅 (한밭대학교 토목.환경.도시공학부)
  • Lee, Jun-Ho (Department of Environmental Engineering, Chungju National University) ;
  • Jung, Yun-Hee (Department of Environmental Engineering, Chungju National University) ;
  • Bang, Ki-Woong (Division of Civil, Environmental and Urban Engineering, Hanbat National University)
  • 투고 : 2009.04.16
  • 심사 : 2009.04.24
  • 발행 : 2009.04.30

초록

도시지역 비점오염부하를 저감하는 장치 중에서 수리동력학적 분리장치(HDS)는 가장 많이 이용되고 있다. 본 연구에서는 HDS장치 유형 중에서 Vortex Screen 장치를 실험실 규모로 개발 및 제작하여 강우유출수 처리특성을 분석하였다. 강우유출수내 입자물질을 모의하기 위하여 실험에 사용한 시료는 합류식 하수관거의 맨홀 바닥 퇴적물질, 도로변 측구의 퇴적물질, 소각장 fly ash, polyvinyl chloride (PVC)분말 등의 시료를 대상으로 하였다. 유입유량의 변화를 주었을 때 처리장치 본체에서 약 2분이 경과한 후 안정된 상태에서 유입수와 유출수 시료를 동시에 채수하였다. 수면적부하율은 110∼1,550 $m^3/m^2$ day의 범위로 운전하였으며, 유입수 SS농도의 범위는 141~1,986 mg/L로 하였다. Vortex Screen을 이용하여 다양한 입경과 밀도들 가진 입자들을 대상으로 수면적부하율과 하부배출유량비를 운전조건으로 하여 처리특성을 분석한 결과 제거효율에 영향을 주는 인자 중, 월류유량에 대한 하부배출유량 비율($Q_U/Q_O$), $Q_U/Q_O$값이 10%에서 20% 증가 시 SS 제거효율은 6% 증가하는 특성을 나타내었다. 도시지역의 대표적인 입경을 가진 퇴적물질 125<$d_p$<300 ${\mu}m$를 대상으로 처리능을 분석한 결과 SS, COD 제거효율 범위는 각각 68.0~ 81.0%, 53.1~71.9%를 나타내었다. 수면적 부하율이 증가함에 따라 처리효율은 유입부 유도판을 설치한 경우가 설치하지 않은 경우보다 10~20% 향상되는 것으로 분석되었다.

The use of hydrodynamic separator is becoming increasingly popular for suspended solids reduction in urban storm runoff. This study is a laboratory investigation of the use of Vortex Screen to reduce the solids concentration of synthesized storm runoff. The synthesized storm runoff was made with water and addition of particles; manhole sediment, road sediment, fly ash, and ployvinyl chloride powder. Vortex Screen was made of acryl resin with 250 mm of diameter and height of 700 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The samples were taken simultaneously at the influent storage tank and effluent tank, and measured SS and COD concentrations. The ranges of surface loading rate were 110 to 1,550 $m^3/m^2$/day, and influent SS concentrations were varied from 141 to 1,986 mg/L. This paper was intended to evaluate the effect of inlet baffle and the ratio of underflow to overflow ($Q_U/Q_O$) on particle separation efficiency for various particle size using Vortex Screen. It was found that when increase of $Q_U/Q_O$ from 10% to 20%, SS removal efficiency was increased about 6%. The range of SS and COD removal efficiencies of road sediment particle size 125<$d_p$<300 ${\mu}m$ were 68.0~81.0%, 53.1~71.9%, respectively. Results showed that SS removal efficiency with inlet baffle improved by about 10~20% compared without inlet baffle.

키워드

참고문헌

  1. Bertrand, J. L., Chebbo, G., and Saget, A., “Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon,” Water Res., 32(8), 2341-2356(1998) https://doi.org/10.1016/S0043-1354(97)00420-X
  2. Lee, J. H. and Bang, K. W., “Characterization of urban stormwater runoff,” Water Res., 34(6), 1773-1780(2000) https://doi.org/10.1016/S0043-1354(99)00325-5
  3. Saget, A, Chebbo, C., and Betrand, J. L., “The first flush in sewer systems,” Water Sci. Technol., 33, 101-108(1996)
  4. Lee, J. H., Bang, K. W., Ketchum, L. H., Choe, J. S., Yu, M. J., “First flush analysis of urban storm runoff,” Sci. Total Environ., 293, 163-175(2002) https://doi.org/10.1016/S0048-9697(02)00006-2
  5. letic, A. and Maksumovic, C. T., “Evaluation of water quality factors in storm runoff from paved areas,” J. Environ. Eng., 124(9), 869-79(1998) https://doi.org/10.1061/(ASCE)0733-9372(1998)124:9(869)
  6. Brombach, H., Xanthopoulos, C., Hahn, H. H., Pisano, W. C., “Experience with vortex separators for combined sewer overflow control,” Water Sci. Technol., 27(5), 93-104(1993)
  7. Field, R., O'Connor, T. P., “Swirl technology : Enhancement of design, evaluation, and application,” J. Env. Eng., 122(8), 741-748(1996) https://doi.org/10.1061/(ASCE)0733-9372(1996)122:8(741)
  8. Andoh, R. Y. G., Saul, A. J., “The use of hydrody-namic vortex separators and screening systems to improve water quality,” Sewer Precesses and Networks, Paris, France, pp. 219-229(2002)
  9. Lee, J. H., Bang, K. W., Choe, J. S., Ketchum, L. H., and Cho, Y., “The vortex concentrator for suspended solids treatment,” Water Environ. Technol., 47(9), 335-341(2003)
  10. CDS Tech, http://www.cdstech.com(2009)
  11. Downstream Defender, http://www.hydro-international.biz (2009)
  12. 조용진, 이준호, 방기웅, 최창수, “강우시 교량도로 유출수 수질 및 입경분포,” 대한환경공학회지, 29(12), 1353-1359(2007)
  13. Lee, J. H., Bang, K. W., Choe, J. S., Joh, S. J., “The hydrodynamic filter separator for removal of urban runoff,” Water Sci. Technol., 53(7), 243-252(2006) https://doi.org/10.2166/wst.2006.229
  14. StormFilter, www.stormwater360.com(2009)
  15. Up-Flow Filter, http://www.hydrointernational.biz(2009)