아연, 산화 아연 나노 입자가 오이에 미치는 독성 및 생물이용성

Phytotoxicity and Bioavailability of Zinc, Zinc Oxide Nanoparticles to the Cucumis sativus

  • 송이레 (이화여자대학교 에코과학부) ;
  • 남윤선 (이화여자대학교 에코과학부) ;
  • 이인숙 (이화여자대학교 에코과학부)
  • 투고 : 2009.02.16
  • 심사 : 2009.06.26
  • 발행 : 2009.07.31

초록

Seedling 성장 실험은 나노입자에 대한 독성 평가로 사용되어 왔다. 본 연구에서는 오이에 대한 나노 아연과 나노 산화아연의 독성을 filter paper방법과 phytagel방법을 통해 평가해 보았다. 비교 결과 phytagel방법이 불용성인 나노아연, 산화 아연의 침전을 방지했다. 오이 seedling 길이는 노출된 나노 아연, 나노 산화 아연의 농도에 따라 filter 방법에서 음의 관계를 나타냈다. 나노 아연과 나노 산화 아연에 대한 오이의 EC50값은 598, 600 mg/L로 나타났다. Filter paper방법에서만 아연의 오이 내 생체 축적량은 노출된 나노 아연, 나노 산화 아연의 농도에 따라 증가하였다. 관찰 결과 filter paper방법이 phytagel 방법보다 더 좋은 protocol로 나타났다

Seedling growth test is used to assess toxicity of nanoparticles (NPs). This study evaluates toxicity of zinc, zinc oxide NPs on Cucumis sativus using two methods; phytagel and filter paper. From the comparison, phytagel method prevents precipitation of water insoluble NPS. Seeding length was negatively related to the exposed concentration of Zn, ZnO NPs in filter method. The median effective concentrations (EC50) for C. sativus exposed to Zn, ZnO NPs were estimated about 598, 600 mg/L in filter method. Bioaccumulation increased with the exposed concentration of Zn, ZnO NPs in only filter method. The results showed that the filter paper method was much better protocol than phytagel method.

키워드

참고문헌

  1. Roco, M. C., “Environmentally responsible development of nanotechnology,”Environ Sci Technol., 39(2), 106A-112A (2005) https://doi.org/10.1021/es053199u
  2. U. S. Environmental Protection Agency Home page, www.epa.gov./OSA/nanotech.htm, February(2007)
  3. Peter, K. S., Rosalyn, L. K., George, L. M., and Kenneth, K., “Metal oxide nanoparticles as bactericidal agents”, Langmuir., 18(17), 6679-6686(2002). https://doi.org/10.1021/la0202374
  4. Oberd rster, G., Ferin, J. and Lehnert, B. E., “Correlation between Particle size, in vivo particle persistence, and lung injury,”Environ Health Perspect., 102(5), 173-179(1994)
  5. Xiao, Y. L., David, B., Steven, S., Willian, M., and Kenneth, D., “Short term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats”, Inhal Toxicol., 11(8), 709-731(1999) https://doi.org/10.1080/089583799196826
  6. H$\"{o}$hr, D., Steinfartz, Y., Schins, R. P. F., Knnapen, A. M., Martra, G., Fubini, B. and Borm, P. J. A., “The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultra fine $TiO_2$ in the rat”, Int J Hyg Environ Health., 205(3), 239-244(2002) https://doi.org/10.1078/1438-4639-00123
  7. Yang, J. G., Okamoto, T., Ichino, R., Bessho, T., Sarake, S. and Okido, M., “A simple way for preparing antioxidation nanocopper powders,”Chem Lett., 35(6), 648-649(2006) https://doi.org/10.1246/cl.2006.648
  8. Nasibulin, A. G., Petri, A. P., Richard, O., Kauppinen, E. and Igor, S. A.“ Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper(Ⅱ) acetylaceroneate”, J. Nanoparicle Res., 3(6), 383-398(2000) https://doi.org/10.1023/A:1012508407420
  9. Yang, L. and Watts, D. J., “Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles,” Toxicol Lett., 158(2), 122-132(2005) https://doi.org/10.1016/j.toxlet.2005.03.003
  10. Lin, D. and Xing, B.,“ Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth”, Environ Pollut., 150(2), 243-250(2007) https://doi.org/10.1016/j.envpol.2007.01.016
  11. Lee, W. M., An, Y. J., Yoon, H. and Kweon, H. K., “Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum Aestivum): plant agar test for water-insoluble nanoparticles”, Environ Toxicol. Chem., 27(9), 1915-1921(2008) https://doi.org/10.1897/07-481.1
  12. Lu, C. M., Zhang, C. Y., Wen, J. Q., Wu, G. R. and Tao, M. X., “Research of the effect of nanomaterials on germination and growth enhancement of Glycine max and its mechanism”, Soybean. Sci., 21, 168-172(2002)
  13. Hong, F. S., Yang, F., Liu, C., Gao, Q., Wan, Z. G., Gu, F. G., Wu, C., Ma, Z. N., Zhou, J. and Yang, P.," Influences of Nano-$TiO_2$on the chloroplast aging of spinach under light", Biol. Trace Elem. Res., 104(3), 249-260(2005a) https://doi.org/10.1385/BTER:104:3:249
  14. Hong, F. S., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L. and Yang, P., “Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach,”Biol, Trace Elem. Res., 105(3), 269-279(2005b) https://doi.org/10.1385/BTER:105:1-3:269
  15. Yang, F., Hong, F. S., You, W. J., Liu, C., Gao, F. Q., Wu, C. and Yang, P.,“ Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach”, Biol, Trace Elem. Res., 110(2), 179-190(2006) https://doi.org/10.1385/BTER:110:2:179
  16. Zheng, L., Hong, F. S., Lu, S. P. and Liu, C., “Effect of nano-$TiO_2$ on strength of naturally aged seeds and growth of spinach,”Biol. Trace Elem. Res., 104(1), 83-91(2005) https://doi.org/10.1385/BTER:104:1:083
  17. U. S. Environmental Protection Agency, Ecological effects test guidelines. OPPTS 850.4200, Seed germination/root elongation toxicity test(1996)