Biodegradation Characteristics of Aldehydes using Biological Activated Carbon Process

생물활성탄 공정을 이용한 오존처리 부산물인 aldehyde류의 생분해 특성평가

  • Ko, Jae-Hyun (Water Quality Institute, Water authority, Busan) ;
  • Son, Hee-Jong (Water Quality Institute, Water authority, Busan) ;
  • Kim, Young-Jin (Water Quality Institute, Water authority, Busan) ;
  • Bae, Seog-Moon (Water Quality Institute, Water authority, Busan) ;
  • Yoo, Pyung-Jong (Water Quality Institute, Water authority, Busan) ;
  • Lee, Tae-Ho (Department of Environmental Engineering, Busan National University)
  • 고재현 (부산광역시 상수도사업본부 수질연구소) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 김영진 (부산광역시 상수도사업본부 수질연구소) ;
  • 배석문 (부산광역시 상수도사업본부 수질연구소) ;
  • 유평종 (부산광역시 상수도사업본부 수질연구소) ;
  • 이태호 (부산대학교 환경공학과)
  • Received : 2009.06.11
  • Accepted : 2009.10.24
  • Published : 2009.11.30

Abstract

In this study, the effects of biofilter media type (three different activated carbons and anthracite), empty bed contact time (EBCT) and temperature on the removal of four aldehyde species (formaldehyde, acetaldehyde, glyoxal and methylglyoxal) in BAC filters were investigated. Experiments were conducted at three water temperature (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15, and 20 min). The experimental results indicated that the coal based BAC retained more bacterial biomass on the surface of the activated carbon than the other BACs, and increasing EBCT or increasing water temperature also increased the four aldehyde species removal in BAC filters. To achieve above 80% of removal efficiency for four aldehyde species in a BAC filter, above 15 min EBCT at $5^{\circ}C$ and 10 min EBCT at above $15^{\circ}C$ were required. The kinetic analysis indicated a first-order reaction rate for the biodegradation of four aldehyde species at various water temperatures. Data obtained from the BAC filters at various temperatures were also used to evaluate pseudo first-order rate constants for four aldehyde species. The half-lives evaluated for formaldehyde, acetaldehyde, glyoxal and methylglyoxal in the coal-based BAC ranging from 0.89 to 3.19 min, from 0.75 to 3.35 min, from 2.16 to 4.72 min and from 1.49 to 3.86 min, respectively, could be used to assist water utilities in designing and operating BAC filters.

생물활성탄 재질별 및 안트라사이트 biofilter에서 EBCT 및 수온변화에 따른 aldehyde 4종(formaldehyde, acetaldehyde, glyoxal 및 methylglyoxal)의 생물분해 특성을 조사한 결과 EBCT와 수온을 증가시킬 경우 제거율이 상승하였으며, 수온이 $25^{\circ}C$일 때 aldehyde 4종의 제거율은 EBCT의 영향을 크게 받지 않았으나 수온이 $5^{\circ}C$일 경우에는 EBCT의 증가가 aldehyde 4종의 제거율 상승에 큰 영향을 미쳤다. 활성탄 재질별 BAC 및 biofilter에서 aldehyde 4종의 제거능은 석탄계-BAC > 야자계-BAC > 목탄계-BAC > biofilter 순으로 조사되었다. 수온 $5^{\circ}C{\sim}25^{\circ}C$, 석탄계- BAC에서 aldehyde류 4종에 대한 생물분해 속도상수(k)와 반감기($t_{1/2}$)를 조사한 결과, formaldehyde는 0.2175~0.7826 $min^{-1}$와 0.89~3.19 min, acetaldehyde는 0.2068~0.9211 $min^{-1}$와 0.75~3.35 min, glyoxal은 0.1468~0.3213 $min^{-1}$와 2.16~4.72 min, methylglyoxal은 0.1794~0.4665 $min^{-1}$와 1.49~3.86 min이었다. Aldehyde 4종에 대한 물질별 생분해율 평가 결과 formaldehyde ${\geq}$ acetaldehyde > methylglyoxal > glyoxal 순으로 나타났다.

Keywords

References

  1. Krasner, S. W., Sclimenti, M. J., and Coffy, B. M., “Testing biologically active filters for removing aldehydes formed during ozonation,”J. AWWA, 85(5), 62-71(1993)
  2. Haag, W. R., and Hoigne, J.,“ Ozonation of bromide containing waters: kinetics of formation of hypobromous acid and bromate,”Environ. Sci. Technol. 17, 261-267(1983) https://doi.org/10.1021/es00111a004
  3. Andrews, S. A., and Huck, P. M., “Using fractionated natural organic matter to quantitate organic byproducts of ozonation,” Ozone Sci. Eng., 16(1), 1-12(1994) https://doi.org/10.1080/01919519408552376
  4. Miltner, R. J., Shukairy, H. M., and Summers, R. S., “Disinfection by-product formation and control by ozonation and biotreatment,”J. AWWA, 84(11), 53-62(1992)
  5. Weinberg, H. S., Glaze, W. H., Krasner, S. W., and Sclimenti, M. J., “Formation and removal of aldehydes in plants that use ozonation,”J. AWWA, 85(5), 72-85(1993) https://doi.org/10.1002/j.1551-8833.1993.tb05988.x
  6. Paode, R. D., Amy, G. L., Krasner, S. W., Summers, R. S., and Rice, E. W., “Predicting the formation of aldehydes and BOM,” J. AWWA, 89(6), 79-93(1997) https://doi.org/10.1002/j.1551-8833.1997.tb08244.x
  7. 손희종, 정철우, 최영익, 배상대,“ 오존처리에 의한 BDOCrapid와 BDOCslow 생성 특성,”대한환경공학회지, 28(12), 1274-1279(2006)
  8. Schechter, D. S., and Singer, P. C., “Formation of aldehydes during ozonation,”Ozone Sci. Eng., 17, 53-69(1995) https://doi.org/10.1080/01919519508547577
  9. Janssens, J. G., Meheus, J., and Dirickx, J., “Ozone enhanced biological activated carbon filtration and its effect on organic matter removal, and in particular on AOC reduction,”Water Sci. Technol., 37, 1055-1068(1984)
  10. Price, M. L., Bailey, R. W., Enos, A. K., Hook, M., and Hermanowicz, S. W., “Evaluation of ozone/biological treatment for disinfection byproducts control and biologically stable water,”Ozone Sci. Eng., 15, 95-130(1993) https://doi.org/10.1080/01919519308552263
  11. 손희종, 유수전, 노재순, 유평종“, 정수처리에서의 생물활성탄 공정,”대한환경공학회지, 31(4), 308-323(2009)
  12. Liu, X., Huck, P. M., and Slawson, R. M., “Factors affecting drinking water biofiltration,”J. AWWA, 93(12), 90-101(2001)
  13. Melin, E. S., and ∅degaard, H.,“ The effect of biofilter loading rate on the removal of organic ozonation by-products,”Water Res., 34(18), 4464-4476(2000) https://doi.org/10.1016/S0043-1354(00)00204-9
  14. Digiano, F. A., Singer, P. C., Parameswar, C., and Lecourt, T. D.,“ Biodegradation kinetics of ozonated NOM and aldehydes,” J. AWWA, 93(8), 92-103(2001)
  15. Elhadi, S. L. N., Huck, P. M., and Slawson, R. M., “Impact of biomass concentrations on the removal of earthy/musty odors from drinking water by biological filters,”Proceedings of 2004 AWWA Annual Conference, June 13-17, Orlando, Florida, (2004)
  16. Yamada, H., and Somiya, I., “The determination of carbonyl compounds in ozonated water by the PFBHA method,”Ozone Sci. Eng., 11, 127-141(1989) https://doi.org/10.1080/01919518908552431
  17. 손희종, 박홍기, 이수애, 정은영, 정철우“, 생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성,”대한환경공학회지, 27(12), 1311-1320(2005)
  18. APHA, AWWA, WEF, “Heterotrophic plate count,”Standard Methods for the Examination of Water and Wastewater, Eaton, A. D., Clesceri, L. S. and Greenberg, A. E.(Eds), APHA, AWWA, WEF, Washington DC, 19th ED, pp. 9-31-9-35(1995)
  19. Fuhrman, J. A., and Azam, F., “Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results,”Mar. Biol., 66, 109-120(1982) https://doi.org/10.1007/BF00397184
  20. Parsons, T. R., Maita, Y., and Lalli, C. M., A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon, New York, (1984)
  21. Bell, R. T., Ahlgren, G. M., and Ahlgren, I., “Estimating bacterioplankton production by the [3H]thymidine incorporation in a eutrophic Swedish Lake,”Appl. Environ. Microbiol., 45, 1709-1721(1983)
  22. 서인숙, 손희종, 최영익, 안욱성, 박청길“, 활성탄과 생물여과 공정에서의 유기질소계 염소 소독부산물 제거 특성,”대한환경공학회지, 29(2), 184-191(2007)
  23. 배상대, 손희종, 정철우,“ 활성탄과 생물여과 공정에서의 chloral hydrate 제거특성,”대한환경공학회지, 30(2), 218-224 (2008)
  24. Melin, E., Eikebrokk, B., Brugger, M., and ${\O}$degaard, H., “Treatment of humic surface water at cold temperatures by ozonation and biofiltration”, Water Sci. Technol.: Water Supply, 2(5-6), 451-457(2002)
  25. 손희종, 유수전, 유평종, 정철우,“ BAC 공정에서 EBCT와 수온에 따른 HAA 제거 특성,”대한환경공학회지, 30(12), 1255-1261(2008)
  26. Griffini, O., Bao, M. L., Barbieri, K., Burrini, D., Santianni, D., and Pantani, F., “Formation and removal of biodegradable ozonation by-products during ozonation-biofiltration treatment: pilot-scale evaluation,”Ozone Sci. Eng., 21, 79-98(1999) https://doi.org/10.1080/01919519908547261