먹이연쇄 생물축적 모형을 이용한 잔류유류오염물질의 생태위해성평가

Ecological Risk Assessment of Residual Petroleum Hydrocarbons using a Foodweb Bioaccumulation Model

  • 황상일 (한국환경정책.평가연구원 통합환경연구본부) ;
  • 권정환 (아주대학교 환경공학과)
  • Hwang, Sang-Il (Integrated Environmental Research Group, Korea Environment Institute) ;
  • Kwon, Jung-Hwan (Department of Environmental Engineering, Ajou University)
  • 투고 : 2009.07.06
  • 심사 : 2009.09.11
  • 발행 : 2009.11.30

초록

유류 유출에 의한 잔류 석유계 오염물질들은 높은 소수성으로 인하여 해양 저서 생태계에 축적될 수 있다. 오염 피해를 입은 지역의 생태위해성평가를 위해서는 통상적으로 많은 모니터링 자료가 필요하다. 간단한 먹이연쇄 생물축적 모형을 이용하여 생태계의 잔류 유류오염물질에 대한 노출수준의 평가를 통해서 모니터링에 소요되는 시간과 비용을 크게 절약할 수 있다. 본 연구에서는 네 종류의 다환방향족탄화수소(페난트린, 안트라센, 피렌, 벤조[a]피렌)에 대하여 가상의 저서생태계를 대상으로 두 개의 노출 시나리오에 대하여 이들 오염물질의 잔류농도를 산정하였다. 해수중 농도를 수용해도의 1/10에 이르는 것으로 가정한 극단적인 시나리오에서 체내 잔류농도는 영양단계에 따라 차이가 있으나, 5~250 mg/kg으로 예측되었다. 또한 대상 생물종들에 대하여 주어진 조건에서 생물농축계수(BCF)와 생물축적계수(BAF)를 평가하였다. 대사과정을 무시할 경우 로그 생물농축계수(log BCF)는 로그 옥탄올-물 분배계수(log $K_{OW}$)가 7.0에 이를 때까지 log $K_{OW}$의 증가에 따라 선형적으로 증가하였고 7.0 이상의 값에서는 점차 감소하였다. 대상생태계에서의 생물증폭 현상은 log $K_{OW}$값이 5.0 이상인 물질에서 두드러졌으며, 이는 많은 석유계 오염물질들의 log $K_{OW}$값이 5.0 이상이므로 오염피해를 입은 생태계내의 생물증폭현상을 예측하기 위해서는 먹이연쇄망의 구조가 매우 중요함을 나타낸다. 지역특이적 노출평가를 위해서는 추가적 연구가 필요하나, 현 상태의 모형은 스크리닝 수준에서의 저서 생태계의 잔류 유류오염물 질에 대한 노출을 평가할 수 있을 것으로 사료된다.

Residual petroleum hydrocarbons after an oil spill may accumulate in the marine benthic ecosystem due to their high hydrophobicity. A lot of monitoring data are required for the estimation of ecosystem exposure to residual petrochemicals in an ecological risk assessment in the affected region. To save time and cost, the environmental exposure to them in the affected ecosystem can also be assessed using a simple food-web bioaccumulation model. In this study, we evaluated residual concentrations of four selected polycyclic aromatic hydrocarbons (phenanthrene, anthracene, pyrene, and benzo[a]pyrene) in a hypothetic benthic ecosystem composed of six species under two exposure scenarios. Body-residue concentration ranged 5~250 mg/kg body depending on trophic positions in an extreme scenario in which the aqueous concentrations of PAHs were assumed to be one-tenth of their aqueous solubility. In addition, bioconcentration factors (BCFs) and bioaccumulation factors (BAFs) were evaluated for model species. The logarithm of bioconcentration factor (log BCF) linearly increased with increasing the logarithm of 1-octanol-water partition coefficient (log $K_{OW}$) until log $K_{OW}$ of 7.0, followed by a gradual decrease with further increase in log $K_{OW}$ without metabolic degradation. Biomagnification became significant when log $K_{OW}$ of a pollutant exceeded 5.0 in the model ecosystem, indicating that investigation of food-web structure should be critical to predict biomagnifications in the affected ecosystem because log $K_{OW}$ values of many petrochemicals are higher than 5.0. Although further research is required for better site-specific evaluation of exposure, the model simulation can be used to estimate the level of the ecosystem exposure to residual oil contaminants at the screening level.

키워드

참고문헌

  1. Sergy, G. A., and Owens, E. H., Guidelines for Selecting Shoreline Treatment Endpoints for Oil Spill Response, Environment Canada (2007)
  2. Landis, W. G., and Yu, M.-H., Introduction to Environmental Toxicology, Lewis Publisher, Boca Raton, pp. 252-254(1995)
  3. US EPA, Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F, Washington DC, pp. 2-4(1998)
  4. Neff, J. M., Stout, S. A., and Gunster, D. G., “Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard,”Integrated Environ. Assess. Manag., 1(1), 22-33(2005) https://doi.org/10.1897/IEAM_2004a-016.1
  5. Barber, M. C., “A review and comparison of models for predicting dynamic chemical bioconcentration in fish,”Environ. Toxicol. Chem., 22(9), 1963-1992(2003) https://doi.org/10.1897/02-468
  6. Gobas, F. A. P. C., Opperhuizen, A., and Hutzinger, O., “Bioconcentration of hydrophobic chemicals in fish: relationship with membrane permeation,”Environ. Toxicol. Chem., 5(7), 637-646(1986) https://doi.org/10.1002/etc.5620050704
  7. Sijm, D. T. H. M. and van der Linde, A., “Size-dependent bioconcentration kinetics of hydrophobic organic chemicals in fish based on diffusive mass transfer and allometric relationships,”Environ. Sci. Technol. 29(11), 2769-277 (1995) https://doi.org/10.1021/es00011a011
  8. Arnot, J. A., and Gobas, F. A. P. C.“, A food web bioaccumulation model for organic chemicals in aquatic ecosystems,”Environ. Toxicol. Chem., 23(10), 2343-2355(2004) https://doi.org/10.1897/03-438
  9. Bergen, B. J., Nelson, W. G., Quinn, J. G., and Jayaraman, S., “Relationships among total lipid, lipid classes, and polychlorinated biphenyl concentrations in two indigenous populations of ribbed mussels (Geukensia demissa) over an annual cycle,”Environ. Toxicol. Chem., 20(3), 575-581(2001) https://doi.org/10.1002/etc.5620200317
  10. Jabusch, T. W., and Swackhamer, D. L., “Partitioning of polychlorinated biphenyls in octanol/water, triolein/water, and membrane/water systems,”Chemosphere, 60(9), 1270-1278(2005) https://doi.org/10.1016/j.chemosphere.2005.01.076
  11. Henderson, R. J., and Tocher, D. R.,“ The lipid composition and biochemistry of freshwater fish,”Prog. Lipid Res., 26(4), 281-347(1987) https://doi.org/10.1016/0163-7827(87)90002-6
  12. U. S. Environmental Protection Agency, Estimation Program Interface (EPI) Suite ver. 4.00. U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxic's, Washington, DC, USA(2008)
  13. Meylan, W. M., and Howard, P. H., Validation of Water Solubility Estimation Methods Using Log Kow for Application in PCGEMS & EPI (Sept 1994, Final Report). prepared for Robert S. Boethling, U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC; prepared by Syracuse Research Corporation, Environmental Science Center, Syracuse, NY 13210 (1994)
  14. Livingstone, D. R.,“ The fate of organic xenobiotics in aquatic ecosystems: quantitative and qualitative differences in biotransformation by invertebrate and fish,”Comp. Biochem. Physiol. A, 120(1), 43-49(1998) https://doi.org/10.1016/S1095-6433(98)10008-9
  15. Luthe, G., Stroomberg, G. J., Ariese, F., Brinkman, U. A. Th., and van Straalen, N. M., “Metabolism of 1-fluoropyrene and pyrene in marine flatfish and terrestrial isopods,”Environ. Toxicol. Pharm., 12(4), 221-229(2002) https://doi.org/10.1016/S1382-6689(02)00093-5
  16. Han, X., Nabb, D. L., Mingoia, R. T., and Yang, C.-H., “Determination of xenobiotic intrinsic clearance in freshly isolated hepatocytes from rainbow trout (Oncorhynchus mykiss) and rate and its application in bioaccumulation assessment,” Environ. Sci. Technol., 41(9), 3269-3276(2007) https://doi.org/10.1021/es0626279
  17. Boehm, P. D., and Page, D. S., “Exposure elements in oil spill risk and natural resource damage assessments: a review,” Human Ecol. Risk Assess., 13(2), 418-448(2007) https://doi.org/10.1080/10807030701226293
  18. 권정환“, 소수성화학물질의 생물축적과 기저독성: 분자크기, 반응속도, 화학적 활성도에 따른 제약,”한국환경독성학회지, 23(2), 67-77(2008)
  19. Nichols, J. W., Fitzsimmons, P. N., and Blau, L. P.,“ In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish II. Modeled effects on chemical bioaccumulation,” Environ. Toxicol. Chem., 26(6), 1304-1319(2007) https://doi.org/10.1897/06-259R.1
  20. Swackhamer, D. L., and Skoglund, R. S., “Bioaccumulation of PCBs by algae: kinetics versus equilibrium,”Environ. Toxicol. Chem., 12(5), 831-838(1993) https://doi.org/10.1002/etc.5620120506
  21. Krop, H. B., Van Noort, P. C. M., and Govers, H. A. J., “Determination and theoretical aspects of the equilibrium between dissolved organic matter and hydrophobic organic micropollutants in water (KDOC),”Rev. Environ. Contam. Toxicol., 169(1), 1-122(2001)
  22. Burkhard, L. P., “Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals,”Environ. Sci. Technol., 34(22), 4663-4668(2000) https://doi.org/10.1021/es001269l
  23. Dulfer, W. J., and Govers, H. A. J., “Membrane water partitioning of polychlorinated-biphenyls in small unilamellar vesicles of 4 saturated phosphatidylcholines,”Environ. Sci. Technol., 29(10), 2548-2554(1995) https://doi.org/10.1021/es00010a014
  24. Kwon, J.-H., Liljestrand, H. M., and Katz, L. E.,“ Partitioning of moderately hydrophobic endocrine disruptors between water and synthetic membrane vesicles,”Environ. Toxicol. Chem., 25(8), 1984-1992(2006) https://doi.org/10.1897/05-550R.1
  25. Sangster Research Laboratory. LOGKOW${\copyright}$ - A databank of evaluated octanol-water partition coefficient (log P). (http://logkow.cisti.nrc.ca/logkow/index.jsp). Last accessed on 24 June 2009