DOI QR코드

DOI QR Code

Characterization of Chryseobacterium aquaticum Strain PUPC1 Producing a Novel Antifungal Protease from Rice Rhizosphere Soil

  • Gandhi Pragash, M. (Department of Biotechnology, Pondicherry University) ;
  • Narayanan, K. Badri (Department of Biotechnology, Pondicherry University) ;
  • Naik, P. Ravindra (Department of Biotechnology, Pondicherry University) ;
  • Sakthivel, N. (Department of Biotechnology, Pondicherry University)
  • Received : 2008.03.03
  • Accepted : 2008.05.28
  • Published : 2009.01.31

Abstract

Strain PUPC1 produces an antifungal protease as well as plant growth promoting enzymes such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phosphatase. Morphological, cultural, and physiological characteristics as well as 16S rRNA gene-sequence-based phylogenetic analysis confirmed the taxonomic affiliation of PUPC1 as Chryseobacterium aquaticum. The optimum growth of PUPC1 was observed at pH 6.0 and $30^{\circ}C$, and maximum protease production was observed in medium B amended with 1% tryptone, 0.5% sucrose, and 0.005% $MnCl_2$. The protease was purified by ammonium sulfate precipitation, Sephadex G-75 gel filtration chromatography, and electroelution from preparative SDS-PAGE. The protease had a molecular mass of 18.5 kDa. The optimum pH and temperature stability of the protease were pH 5.0-10.0 and temperature $40-70^{\circ}C$. Chryseobacterium aquaticum PUPC1 and its protease showed a broad-spectrum antifungal activity against phytopathogenic fungi. Strain PUPC1 also exhibited plant growth promoting traits. The objective of the present investigation was to isolate a strain for agricultural application for plant growth promotion and biocontrol of fungal diseases.

Keywords

References

  1. Ayyadurai, N., P. Ravindra Naik, and N. Sakthivel. 2007. Functional characterization of antagonistic fluorescent pseudomonads associated with rhizospheric soil of rice (Oryza sativa L.). J. Microbiol. Biotechnol. 17: 919-927
  2. Ayyadurai, N., P. Ravindra Naik, M. Sreehari Rao, R. Sunish Kumar, S. K. Samrat, M. Manohar, and N. Sakthivel. 2006. Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. J. Appl. Microbiol. 100: 926-937 https://doi.org/10.1111/j.1365-2672.2006.02863.x
  3. Bric, J. M., R. M. Bostock, and S. E. Silverstone. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57: 535-538
  4. Cattelan, A. J., P. G. Hartel, and F. F. Fuhrman. 1999. Screening for plant growth promoting rhizobacteria to promote early soyabean growth. Soil Sci. Soc. Am. J. 63: 1670-1680 https://doi.org/10.2136/sssaj1999.6361670x
  5. Chernin, L., Z. Ismailov, S. Haran, and I. Chet. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol. 61: 1720-1726
  6. Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31: 53-80 https://doi.org/10.1146/annurev.py.31.090193.000413
  7. Domenech, J., M. S. Reddy, J. W. Kloepper, B. Ramos, and J. Gutierrez-Manero. 2006. Combined application of the biological product LS213 with Bacillus, Pseudomonas, or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol 51: 245-258 https://doi.org/10.1007/s10526-005-2940-z
  8. Gerhardt, P., R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Phillips. 1981. Manual of Methods for General Bacteriology. Washington, DC
  9. Gobbetti, M., A. Corsetti, E. Smacchi, and J. Rossi. 1997. Purification and characterization of a proteinaceous compound from Pseudomonas fluorescens ATCC 948 with inhibitory activity against some Gram-positive and Gram-negative bacteria of dairy interest. Lait 77: 267-278 https://doi.org/10.1051/lait:1997219
  10. Hager, D. A. and R. R. Burgess. 1980. Elution of proteins from sodium dodecyl sulfate polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: Results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal. Biochem. 109: 76-86 https://doi.org/10.1016/0003-2697(80)90013-5
  11. Harman, G. E., C. K. Hayes, M. Lorito, R. M. Broadway, A. Di Pietro, C. Peterbauer, and A. Tronsmo. 1993. Chitinolytic enzymes of Trichoderma harzianum: Purification of chitobiosidase and endochitinase. Phytopathologica 83: 313-318 https://doi.org/10.1094/Phyto-83-313
  12. Holmes, W. E. and D. R. Zak. 1994. Soil microbial biomass dynamics and net nitrogen mineralization in northern hardwood ecosystems. Soil Sci. Soc. Am. J. 58: 238-243 https://doi.org/10.2136/sssaj1994.03615995005800010036x
  13. Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology. Williams & Wilkins, MD, Baltimore
  14. Hsueh, P. R., L. T. Teng, S. W. Ho, W. C. Hsieh, and K. T. Luh. 1997. Increasing incidence of nosocomial infections caused by Chryseobacterium indologenes. Eur. J. Clin. Microbiol. Infect. Dis. 16: 568-574 https://doi.org/10.1007/BF02447918
  15. Hu, H. B., Y. Q. Xu, F. Chen, X. H. Zhang, and B. K. Hur. 2005. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine-1-carboxylic acid and pyoluteorin. J. Microbiol. Biotechnol. 15: 86-90
  16. Imoto, T. and K. Yagishita. 1971. A simple activity measured by lysozyme. Agric. Biol. Chem. 35: 1154-1156 https://doi.org/10.1271/bbb1961.35.1154
  17. Kikuchi, Y., H. Itaya, M. Date, K. Matsui, and L. F. Wu. 2008. Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 78: 67-74 https://doi.org/10.1007/s00253-007-1283-3
  18. King, J. E. 1932. The colorimetric determination of phosphorus. Biochem. J. 26: 292-295 https://doi.org/10.1042/bj0260292
  19. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  20. Liu, Y., Z. Cheng, T. B. Ng, J. Zhang, M. Zhou, F. Song, F. Lu, and Y. Liu. 2007. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28: 553-559 https://doi.org/10.1016/j.peptides.2006.10.009
  21. Lowry, O. H., N. J. Rose Brough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  22. Neilands, J. B. 1984. Siderophores of bacteria and fungi. Microbiol. Sci. 1: 9-14
  23. Oh, Y. S., I. L. Shih, Y. M. Tzeng, and S. L. Wang. 2000. Protease produced by Pseudomonas aeruginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes. Enzyme Microb. Technol. 27: 3-10 https://doi.org/10.1016/S0141-0229(99)00172-6
  24. Pan, H. J., L. J. Teng, Y. C. Chen, P. R. Hsueh, P. C. Yang, S. W. Ho, and K. T. Luh. 2000. High protease activity of Chryseobacterium indologenes isolates associated with invasive infection. J. Microbiol. Immunol. Infect. 33: 223-226
  25. Park, M. S., S. R. Jung, M. S. Lee, K. O. Kim, J. O. Do, K. H. Lee, S. B. Kim, and K. S. Bae. 2005. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J. Microbiol. 43: 219-227
  26. Penrose, D. M. and B. R. Glick. 2002. Methods for isolating and characterizing ACC deaminase containing plant growth promoting rhizobacteria. Physiol. Plantarum 118: 10-15 https://doi.org/10.1034/j.1399-3054.2003.00086.x
  27. Peterson, G. L. 1977. A simplification of the protein assay method of Lowry et al., which is more generally applicable. Annu. Rev. Biochem. 83: 346-356 https://doi.org/10.1016/0003-2697(77)90043-4
  28. Pikovskaya, R. I. 1948. Mobilization of phosphorous in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 363-370
  29. Ravindra Naik, P. and N. Sakthivel. 2006. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res. Microbiol. 157: 538-546 https://doi.org/10.1016/j.resmic.2005.11.009
  30. Ryu, E. 1940. A simple method of differentiating between Gram-positive and Gram-negative organisms without staining. Kitasato Arch. Exp. Med. 17: 58-63
  31. Sakthivel, N. and S. S. Gnanamanickam. 1987. Evaluation of Pseudomonas fluorescens for suppression of sheath rot disease and for enhancement of grain yields in rice (Oryza sativa L.). Appl. Environ. Microbiol. 53: 2056-2059
  32. Sakthivel, N. and S. S. Gnanamanickam. 1989. Incidence of different biovars of Pseudomonas fluorescens in flooded rice rhizospheres in India. Agric. Ecosyst. Environ. 25: 287-298 https://doi.org/10.1016/0167-8809(89)90126-6
  33. Shastry, S. and M. S. Prasad. 2002. Extracellular protease from Pseudomonas sp. (CL 1457) active against Xanthomonas campestris. Process Biochem. 37: 611-621 https://doi.org/10.1016/S0032-9592(01)00249-7
  34. Sunish Kumar, R., N. Ayyadurai, P. Pandiaraja, A. V. Reddy, Y. Venkateswarlu, Om Prakash, and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broadspectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98: 145-154 https://doi.org/10.1111/j.1365-2672.2004.02435.x
  35. Venter, H., G. Osthoff, and D. Litthauer. 1999. Purification and characterization of a metalloprotease from Chryseobacterium indologenes Ix9a and determination of the amino acid specificity with electrospray mass spectrometry. Prot. Express. Purif. 15: 282-295 https://doi.org/10.1006/prep.1998.1020
  36. Wang, S. L. and W. T. Chang. 1997. Purification and characterization of two bifunctional chitinase/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl. Environ. Microbiol. 63: 380-386
  37. Wang, S. L., T. C. Yieh, and I. L. Shih. 1999. Purification and characterization of a new antifungal compound produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Enzyme Microb. Technol. 25: 439-446 https://doi.org/10.1016/S0141-0229(99)00069-1
  38. Wang, S. L., I. L. Shih, T. W. Liang, and C. H. Wang. 2002. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. J. Agric. Food Chem. 50: 2241-2248 https://doi.org/10.1021/jf010885d
  39. Wang, S. L., C. H. Yang, T. W. Liang, and Y. H. Yen. 2008. Optimization of conditions for protease production by Chryseobacterium taeanense TKU001. Bioresour. Technol. 99: 3700-3707 https://doi.org/10.1016/j.biortech.2007.07.036
  40. Yamaguchi, S. and M. Yokoe. 2000. A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl. Environ. Microbiol. 66:3337-3343 https://doi.org/10.1128/AEM.66.8.3337-3343.2000

Cited by

  1. Chryseobacterium 속 신종세균 JK1의 세포외 단백질분해효소 생산특성 vol.48, pp.1, 2009, https://doi.org/10.7845/kjm.2012.48.1.048
  2. Chryseobacterium sp. JK1이 분비하는 세포외 단백질분해효소 특성 vol.49, pp.1, 2009, https://doi.org/10.7845/kjm.2013.019
  3. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance vol.9, pp.6, 2009, https://doi.org/10.1371/journal.pone.0099168
  4. Simultaneous Production of Antifungal and Keratinolytic Activities by Feather-Degrading Bacillus subtilis S8 vol.55, pp.1, 2009, https://doi.org/10.1007/s12088-014-0502-8
  5. Genome assembly of Chryseobacterium sp. strain IHBB 10212 from glacier top-surface soil in the Indian trans-Himalayas with potential for hydrolytic enzymes vol.13, pp.None, 2017, https://doi.org/10.1016/j.gdata.2017.06.003
  6. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3 vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01895
  7. Influence of hot water on breaking dormancy, incubation temperature and rhizobial inoculation on germination of Acacia mearnsii seeds vol.82, pp.3, 2009, https://doi.org/10.1080/00049158.2019.1636350
  8. Bacteria associated with cockroaches: health risk or biotechnological opportunity? vol.104, pp.24, 2009, https://doi.org/10.1007/s00253-020-10973-6
  9. Cell-Free Supernatants of Plant Growth-Promoting Bacteria: A Review of Their Use as Biostimulant and Microbial Biocontrol Agents in Sustainable Agriculture vol.12, pp.23, 2020, https://doi.org/10.3390/su12239917
  10. Chryseobacterium antibioticum sp. nov. with antimicrobial activity against Gram-negative bacteria, isolated from Arctic soil vol.74, pp.2, 2009, https://doi.org/10.1038/s41429-020-00367-1
  11. Chryseobacterium schmidteae sp. nov. a novel bacterial species isolated from planarian Schmidtea mediterranea vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-90562-3