DOI QR코드

DOI QR Code

Aeration Control of Thermophilic Aerobic Digestion Using Fluorescence Monitoring

  • Kim, Young-Kee (Department of Chemical Engineering, Hankyong National University) ;
  • Oh, Byung-Keun (Department of Chemical and Biomolecular Engineering, Sogang University)
  • Received : 2008.03.15
  • Accepted : 2008.06.10
  • Published : 2009.01.31

Abstract

The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate.

Keywords

References

  1. Al-Ghusain, I. and O. J. Hao. 1995. Use of pH as control parameter for aerobic/anoxic sludge digestion. J. Environ. Eng. 121: 225-235 https://doi.org/10.1061/(ASCE)0733-9372(1995)121:3(225)
  2. Bomio, M., B. Sonnleitner, and A. Fiechter. 1989. Growth and biocatalytic activities of aerobic thermophilic populations in sewage sludge. Appl. Microbiol. Biotechnol. 32: 356-362 https://doi.org/10.1007/BF00184989
  3. Borowski, S. and J. S. Szopa. 2007. Experiences with the dual digestion of municipal sewage sludge. Bioresource Technol. 98:1199-1207 https://doi.org/10.1016/j.biortech.2006.05.017
  4. Chu, A., D. S. Mavinic, H. G. Kelly, and C. Guarnaschelli. 1997. The influence of aeration and solids retention time on volatile fatty acid accumulation in thermophilic aerobic digestion of sludge. Environ. Technol. 18: 731-738 https://doi.org/10.1080/09593331808616591
  5. Christopher, J. R. and J. N. Nicholas. 1996. Pretreatment of sewage sludges. Appl. Biochem. Biotech. 57/58: 983-990 https://doi.org/10.1007/BF02941778
  6. Estaben, M., M. Polit, and J. P. Steyer. 1997. Fuzzy control for an anaerobic digester. Control Eng. Practice 5: 1303-1310 https://doi.org/10.1016/S0967-0661(97)84369-9
  7. Gaudy, A. F. Jr. and E. T. Gaudy. 1980. Microbiology for Environmental Scientists and Engineers, pp. 472-487. McGraw-Hill Inc., New York
  8. Gomez, J., M. de Garcia, E. Ayesa, and J. L. Garcia-Heras. 2007. Mathematical modeling of autothermal thermophilic aerobic digestion. Water Res. 41: 959-968 https://doi.org/10.1016/j.watres.2006.11.042
  9. Hamer, G. and H. P. Zwiefelhofer. 1986. Aerobic thermophilic hygienisation: A supplement to anaerobic mesophilic waste sludge digestion. Chem. Eng. Res. Des. 64: 417-424
  10. Haner, A., C. A. Mason, and G. Hamer. 1994. Aerobic thermophilic waste sludge biotreatment: Carboxylic acid production and utilization during biodegradation of bacterial cells under oxygen limitation. Appl. Microbiol. Biotechnol. 40: 904-909 https://doi.org/10.1007/BF00173997
  11. Harrison, D. and B. Chance. 1970. Fluorimetric technique for monitoring changes in the level of reduced nicotinamide dinucleotides in continuous culture of microorganisms. Appl. Microbiol. 19: 446-450
  12. Juteau, P. 2006. Review of the use of aerobic thermophilic bioprocesses for the treatment of swine waste. Livestock Sci. 102: 187-196 https://doi.org/10.1016/j.livsci.2006.03.016
  13. Kim, Y. K., M. S. Kwak, W. H. Lee, and J. W. Choi. 2000. Ultrasonic pretreatment for thermophilic aerobic digestion in industrial waste activated sludge treatment. Biotechnol. Bioprocess Eng. 5: 469-474 https://doi.org/10.1007/BF02931950
  14. Kim, Y. K., Y. S. Eom, B. K. Oh, W. H. Lee, and J. W. Choi. 2001. Application of a thermophilic aerobic digestion process to industrial waste activated sludge treatment. J. Microbiol. Biotechnol. 11: 570-576
  15. Kim, Y. K., J. H. Bae, B. K. Oh, W. H. Lee, and J. W. Choi. 2002. Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for thermophilic aerobic digestion process. Bioresource Technol. 82: 157-164 https://doi.org/10.1016/S0960-8524(01)00177-8
  16. Kim, Y. K., M. S. Kwak, S. B. Lee, W. H. Lee, and J. W. Choi. 2002. Effects of pretreatments on thermophilic aerobic digestion. J. Environ. Eng. 128: 755-763 https://doi.org/10.1061/(ASCE)0733-9372(2002)128:8(755)
  17. Kim, Y. K. and J. W. Choi. 2002. Optimum operation of thermophilic aerobic digestion pocess for waste activated sludge minimization. J. Microbiol. Biotechnol. 12: 683-686
  18. Kim, Y. K. and J. W. Choi. 2004. Fuzzy controller for thermophilic aerobic digestion using nicotinamide adenine dinucleotide fluorescence. J. Environ. Eng. (ASCE) 130: 759-765 https://doi.org/10.1061/(ASCE)0733-9372(2004)130:7(759)
  19. Li, X. and L. K. Ju. 1999. On-line fluorescence profile of aerobic sludge digestion. Biotechnol. Prog. 15: 1125-1132 https://doi.org/10.1021/bp990104h
  20. Luong, J. and A. Mulchanani. 1990. Application of NADHdependent fluorescence sensors for monitoring and controlling bioprocess, pp. 75-94. In J. Twork and A. Yacynych (eds.), Sensors in Bioprocess Control. Marcel Dekker, Inc., New York
  21. Mason, C. A., G. Hamer, T. Fleischmann, and C. Lang. 1987. Aerobic thermophilic biodegradation of microbial cells. Appl. Microbiol. Biotechnol. 25: 568-573 https://doi.org/10.1007/BF00252018
  22. Mason, C. A., A. A. Haner, and G. Hamer. 1992. Aerobic thermophilic waste sludge treatment. Wat. Sci. Tech. 25: 113-118
  23. Messenger, J. R., H. A. De Villiers, and G. A. Ekama. 1993. Evaluation of the dual digestion system; Part 2: Operation and performance of the pure oxygen aerobic reactor. Water SA 19:193-200
  24. Meyer, C. and W. Beyeler. 1984. Control strategies for continuous bioprocesses based on biological activities. Biotechnol. Bioeng. 26: 916-925 https://doi.org/10.1002/bit.260260816
  25. Pagilla, K. R., K. C. Crancey, and W. H. Kido. 1996. Aerobic thermophilic pretreatment of mixed sludge for pathogen reduction and Norcardia control. Water Environ. Res. 68: 1093-1098 https://doi.org/10.2175/106143096X128117
  26. Rao, G. and R. Metharasan. 1989. NADH levels and solventogenesis in Clostridium acetobutylicum: New insights through culture fluorescence. Appl. Microbiol. Biotechnol. 30:59-66 https://doi.org/10.1007/BF00255997
  27. Sureshkumar, G. K. and R. Mutharasan. 1993. Intracellular pH-based controlled cultivation of yeast cells II: Cultivation methodology. Biotechnol. Bioeng. 42: 295-302 https://doi.org/10.1002/bit.260420305
  28. Ugwuanyi, J. O., L. M. Harvey, and B. McNeil. 2005. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste. Bioresource Technol. 96: 707-719 https://doi.org/10.1016/j.biortech.2004.06.027
  29. Ugwuanyi, J. O., L. M. Harvey, and B. McNeil. 2005. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste. Bioresource Technol. 96: 721-730 https://doi.org/10.1016/j.biortech.2004.06.028

Cited by

  1. Purification and characterization of a serine protease secreted by Brevibacillus sp. KH3 for reducing waste activated sludge and biofilm formation vol.102, pp.22, 2009, https://doi.org/10.1016/j.biortech.2011.08.098
  2. ATAD control goals through the analysis of process variables and evaluation of quality, production and cost vol.71, pp.5, 2009, https://doi.org/10.2166/wst.2015.006