References
- Austain, B. 1988. Methods in Aquatic Bacteriology, pp. 222-231. Wiley-Interscience
- Baneyx, F. and M. Muhacic. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22: 1399-1408 https://doi.org/10.1038/nbt1029
- Betiku, E. 2006. Molecular chaperones involved in heterologous protein folding in Escherichia coli. Biotech. Mol. Biol. Rev. 1: 66-75
- Bulter, T., S. G. Lee, W. W. Wong, E. Fung, M. R. Connor, and J. C. Liao. 2004. Design of artificial cell-cell communication using gene and metabolic network. Proc. Natl. Acad. Sci. U.S.A. 101: 2299-2304 https://doi.org/10.1073/pnas.0306484101
- Chow, K. C. and W. L. Tung. 1998. Overexpression of dnak/ dnaJ and GroEL confers freeze tolerance to E. coli. Biochem. Biophys. Res. Commun. 253: 502-505 https://doi.org/10.1006/bbrc.1998.9766
- Desmond, C., G. F. Fitzgerald, C. Stanton, and R. P. Ross. 2004. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl. Environ. Microbiol. 70: 5929-5936 https://doi.org/10.1128/AEM.70.10.5929-5936.2004
- Ferrer, M., T. N. Chernikova, M. M. Yakimove, P. N. Golyshin, and K. N. Timmis. 2003. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21:1266-1267 https://doi.org/10.1038/nbt1103-1266b
- Georgopoulos, C. and W. J. Welch. 1993. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9: 601-634 https://doi.org/10.1146/annurev.cb.09.110193.003125
- Guisbert, E., C. Herman, C. Z. Lu, and C. A. Gross. 2004. A chaperone network controls the heat shock response in E. coli. Genes Dev. 18: 2812-2821 https://doi.org/10.1101/gad.1219204
- Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith. 1995. Tight regulation, modulation and high-level expression by vectors containing the arabinose BAD promoter. J. Bacteriol. 177: 4121-4130 https://doi.org/10.1128/jb.177.14.4121-4130.1995
- Heo, M. A., S. H. Kim, S. Y. Kim, Y. J. Kim, J. Chung, M. K. Oh, and S. G. Lee. 2006. Functional expression of single-chain variable fragment antibody against c-Met in the cytoplasm of Escherichia coli. Protein Expr. Purif. 47: 203-209 https://doi.org/10.1016/j.pep.2005.12.003
-
Hisotsuyanagi, K. 1979. Stepwise introduction of regulatory genes stimulating production of
$\alpha$ -amylase into Bacillus subtilis: Construction of$\alpha$ -amylase extra hyper producing strain. Agric. Biol. Chem. 43: 2343-2349 https://doi.org/10.1271/bbb1961.43.2343 - Hoffmann, F. and U. Rinas. 2004. Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 89: 143-161
- Juneja, V. K., P. G. Klein, and B. S. Marmer. 1998. Heat shock and thermotolerance of Escherichia coli O157:H7 in a model beef gravy system and ground beef. J. Appl. Microbiol. 84: 677-684 https://doi.org/10.1046/j.1365-2672.1998.00396.x
- Kerner, M. J., D. J. Naylor, Y. Ishihama, T. Maier, H. C. Chang, A. P. Stines, et al. 2005. Proteome-wide analysis of chaperonindependent protein folding in Escherichia coli. Cell 122: 209-220 https://doi.org/10.1016/j.cell.2005.05.028
- Lee, J. H., M. A Heo, J. H. Seo, J. H. Kim, B. G. Kim, and S. G. Lee. 2008. Improving the growth rate of Escherichia coli DH5 alpha at low temperature through engineering of GroEL/S chaperone system. Biotechnol. Bioeng. 99: 515-520 https://doi.org/10.1002/bit.21616
- Lee, S. G., J. O. Lee, J. K. Yi, and B. G. Kim. 2002. Production of cytidine 5-monophosphate N-acetylneuraminic acid using recombinant E. coli as a biocatalyst. Biotechnol. Bioeng. 80: 516-524 https://doi.org/10.1002/bit.10398
- Mogk, A., T. Tomoyasu, P. Goloubinoff, S. Rudiger, D. Roder, H. Langen, and B. Bukau. 1999. Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18: 6934-6949 https://doi.org/10.1093/emboj/18.24.6934
- Nakamura, T., M. Tanaka, A. Maruyama, Y. Higashi, and Y. Kurusu. 2004. A nonconserved carboxy-terminal segment of GroEL contributes to reaction temperature. Biosci. Biotechnol. Biochem. 68: 2498-2504 https://doi.org/10.1271/bbb.68.2498
- Nishihara, K., M. Kanemori, M. Kitakawa, H. Yanaki and T. Yura. 1998. Chaperone coexpression plasmids: Differential and synergenic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in E. coli. Appl. Environ. Microbiol. 64: 1694-1699
- Nishihara, K., M. Kanemori, M. Kitakawa, H. Yanaki, and T. Yura. 2000. Overexpression of trigger factor prevents aggregation of recombinant proteins in E. coli. Appl. Environ. Microbiol. 66: 884-889 https://doi.org/10.1128/AEM.66.3.884-889.2000
- Paik, S. K., H. S. Yun, H. Y. Sohn, and I. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13: 85-89
- Sambrook, J. and D. W. Russel, 1989. Molecular Cloning: A Laboratory Manual, 3rd Ed., pp. 213. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
- Seo, J. S., Y. M. Lee, H. G. Park, and J. S. Lee. 2006. The intertidal copepod Tigriopus japonicus small heat shock protein 20 gene (Hsp20) enhances thermotolerance of transformed Escherichia coli. Biochem. Biophys. Res. Commun. 340: 901-908 https://doi.org/10.1016/j.bbrc.2005.12.086
- Shigapova, N., Z. Torok, G. Balogh, P. Goloubinoff, L. Vigh, and I. Horvath. 2005. Membrane fluidization triggers membrane remodeling which affects the thermotolerance in E. coli. Biochem. Biophys. Res. Commun. 328: 1216-1223 https://doi.org/10.1016/j.bbrc.2005.01.081
- Walter, S. and J. Buchner. 2002. Molecular chaperones. Angew. Chem. Int. Ed. 41: 1098-1113 https://doi.org/10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9
- Young, J. C., V. R. Agashe, K. Siegers, and F. U. Hartl. 2004. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. 5: 781-791 https://doi.org/10.1038/nrm1492
Cited by
-
Cooperativity of
${\alpha}$ - and${\beta}$ -Subunits of Group II Chaperonin from the Hyperthermophilic Archaeum Aeropyrum pernix K1 vol.21, pp.2, 2009, https://doi.org/10.4014/jmb.1010.10010 - Encapsulation of Nanoparticles Using Nitrilotriacetic Acid End‐Functionalized Polystyrenes and Their Application for the Separation of Proteins vol.22, pp.19, 2009, https://doi.org/10.1002/adfm.201200849
- Coexpression of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferon-gamma in Escherichia coli vol.93, pp.3, 2009, https://doi.org/10.1007/s00253-011-3599-2
- Global Transcriptional Response to Heat Shock of the Legume Symbiont Mesorhizobium loti MAFF303099 Comprises Extensive Gene Downregulation vol.21, pp.2, 2009, https://doi.org/10.1093/dnares/dst050
- Water-Soluble Humic Materials Modulating Metabolism and Triggering Stress Defense in Sinorhizobium fredii vol.9, pp.1, 2009, https://doi.org/10.1128/spectrum.00293-21