Characterization and Production of Antibiotic by Bacillus subtilis 028-1, a Chungkookjang Fermenting Strain

청국장 발효 균주인 Bacillus subtilis 028-1의 항생물질 생산과 특성

  • 안경준 (서원대학교 과학교육과)
  • Received : 2009.03.12
  • Accepted : 2009.06.10
  • Published : 2009.06.30

Abstract

Chungkookjang fermenting Bacillus subtilis 028-1 strain suppressed the growth of Staphylococcus sp. LS2, Saccharomyces cerevisiae, and Candida albicans. B. subtilis 028-1 strain produced antibiotic effectively in the medium of 2% soybean meal and 1% maltose as a disaccharide, when the shaking was continued 15~18 h and the pH of culture medium was maintained under 6.5. The antibiotic activity was optimized when the initial pH of the culture medium of test strain was adjusted with weak alkali, was remained after 20 min of boiling and for more than 1 month in room temperature, and was weakened slowly by the digestion of chymotrypsin and papain. The molecular weight of the antibiotic was identified between 500 and 1,000 dalton by dialysis, and antibiotic substance was considered as not surfactin but a member of iturin family because of the absence of fibrinolytic activity.

Bacillus subtilis 028-1 균주는 청국장 발효에 사용하는 균주로 Staphylococcus sp. LS2 뿐만 아니라 여러 yeast 균주의 생장을 억제하는 항생물질을 생산하며, soybean meal 2%와 maltose와 같은 이당류를 1% 첨가하여 15~18시간 진탕 배양하였을 때 최대의 항생물질 생산을 보였으며 배지의 pH는 6.5 이하였다. 항생물질의 활성은 약염기성 조건에서 극대화되었으며, $100^{\circ}C$에서 20분간 가열하여도 활성은 크게 감소하지 않았고, 실온 보관 시 한 달 이상 효과가 지속되며 chymotrypsin과 papain 같은 단백질 분해효소 처리에 의해 서서히 활성이 줄어들었다. 투석에 의해 항생물질의 분자량을 측정한 결과 1,000에서 500 dalton 사이인 것으로 나타났으며 항미생물 효과는 있으나 fibrin 분해 능력이 없으므로 surfactin이 아닌 iturin 계열의 peptide성 항생물질로 보인다.

Keywords

References

  1. Asaka, O. and M. Shoda. 1996. Biocontrol of Rizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62, 4081-4085
  2. Akpa, E., P. Jacques, B. Wathelet, M. Paquot, R. Fuchs, H. Budzikiewicz, and P. Thonart. 2001. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl. Biochem. Biotechnol. 91-93, 551-561 https://doi.org/10.1385/ABAB:91-93:1-9:551
  3. Besson, F., F. Peypoux, and G. Michel. 1979. Antifungal activity upon Saccharomyces cerevisiae of iturin A, mycosubtilin, bacillomycin L and of their derivatives; inhibition of this antifungal activity by lipid antagonists. J. Antibiot. 32, 828-833 https://doi.org/10.7164/antibiotics.32.828
  4. Besson, F., C. Chevanet, and G. Michel. 1987. Influence of the culture medium on the production of iturin A by Bacillus subtilis. J. Gen. Microbiol. 133, 767-772 https://doi.org/10.1099/00221287-133-3-767
  5. Besson, F. and G. Michel. 1987. Isolation and characterization of new iturins: iturin D and iturin E. J. Antibiot. 40, 437-442 https://doi.org/10.7164/antibiotics.40.437
  6. Besson, F. and G. Michel. 1988. Bacillomycins $F_b$ and $F_c$: isolation and characterization. J. Antibiot. 41, 282-288 https://doi.org/10.7164/antibiotics.41.282
  7. Besson, F. and G. Michel. 1991. Influence of divalent ions on the solubility of iturin and bacillomycin L, antifungal peptidolipids of Bacillus subtilis. Microbios 65, 15-21
  8. Bizani, D., A.S. Motta, J.A.C. Morrissy, R.M.S. Terra, A.A. Souto, and A. Brandelli. 2005. Antibacterial activity of cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus. Int. Microbiol. 8, 125-131
  9. Burianek, L.L. and A.E. Yousef. 2000. Solvent extraction of bacteriocins from liquid cultures. Lett. Appl. Microbiol. 31, 193-197 https://doi.org/10.1046/j.1365-2672.2000.00802.x
  10. Cho, S.J., S.K. Lee, B.J. Cha, Y.H. Kim, and K.S. Shin, 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol. Lett. 223, 47-51 https://doi.org/10.1016/S0378-1097(03)00329-X
  11. Chung, Y.R., C.H. Kim, I.H. Hwang, and J.S. Chun. 2000. Paenibacillus koreensis sp. nov., a new species that produces an iturinlike antifungal compound. Int. J. Syst. Evol. Microb. 50, 1495-1500 https://doi.org/10.1099/00207713-50-4-1495
  12. Citernesi, A.S., C. Filippi, G. Bagnoli, and M. Giovannetti. 1994. Effects of the antimycotic molecule iturin A2, secreted by Bacillus subtilis strain M51, on arbuscular mycorrhizal fungi. Microbiol. Res. 149, 241-246 https://doi.org/10.1016/S0944-5013(11)80064-9
  13. Eshita, S.M. and N.H. Roberto. 1995. Bacillomycin $L_c$, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. J. Antibiot. 48, 1240-1247 https://doi.org/10.7164/antibiotics.48.1240
  14. Han, J.S., J.H. Cheng, T.M. Yoon, J. Song, A. Rajkarnikar, W.G. Kim, I.D. Yoo, and Y.Y. Yang. 2006. Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. J. Appl. Microbiol. 99, 213-221 https://doi.org/10.1111/j.1365-2672.2005.02614.x
  15. Hsieh, F.C., T.C. Lin, M. Meng, and S.S. Kao. 2008. Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Curr. Microbiol. 56, 1-5 https://doi.org/10.1007/s00284-007-9003-x
  16. Kajimura, Y., M. Sugiyama, and M. Kaneda. 1995. Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2. J. Antibiot. 48, 1095-1103 https://doi.org/10.7164/antibiotics.48.1095
  17. Katz, E. and A.L. Demain. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41, 449-474
  18. Kim, S.I., J.Y. Chang, I.C. Kim, and H.C. Chang. 2001. Characterization of bacteriocin from Bacillus subtilis cx1. Kor. J. Appl. Microbiol. Biotechnol. 29, 50-55
  19. Kim, P.I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park, and Y.T. Chi. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97, 942-949 https://doi.org/10.1111/j.1365-2672.2004.02356.x
  20. Kleerebezem, M., L.E.N. Quadri, O.P. Kuipers, and W.M. de Vos. 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-negative bacteria. Mol. Microbiol. 24, 895-904 https://doi.org/10.1046/j.1365-2958.1997.4251782.x
  21. Klich, M.A., A.R. Lax, and J.M. Bland. 1991. Inhibition of some mycotoxigenic fungi by iturin A, a peptidolipid produced by Bacillus subtilis. Mycopathologia 116, 77-80 https://doi.org/10.1007/BF00436368
  22. Klich, M.A., K.S. Arthur, A.R. Lax, and J.M. Bland. 1994. Iturin A: a potential new fungicide for stored grains. Mycopathologia 127, 123-127 https://doi.org/10.1007/BF01103068
  23. Kolter, R. 1992. Genetics of ribosomally synthesized peptide antibiotics. Ann. Rev. Microbiol. 46, 141-163 https://doi.org/10.1146/annurev.mi.46.100192.001041
  24. Kondoh, M., M. Hirai, and M. Shoda. 2001. Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis RB14-C and flutolanil. J. Biosci. Bioeng. 91, 173-177 https://doi.org/10.1263/jbb.91.173
  25. Landy, M., G.H. Warren, S.B. Rosenman, and L.G. Colio. 1948. Bacillomycin: an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc. Soc. Exp. Biol. Med. 67, 539-541 https://doi.org/10.3181/00379727-67-16367
  26. Latoud, C., F. Peypoux, and G. Michel. 1990. Interaction of iturin A, a lipopeptide antibiotic, with Saccharomyces cerevisiae cells: influence of the sterol membrane composition. Can. J. Microbiol. 36, 384-389 https://doi.org/10.1139/m90-067
  27. Maget-Dana, R., F. Heitz, M. Ptak, F. Peypoux, and M. Guinand. 1985. Bacterial lipopeptides induce ion-conducting pores in planar bilayers. Biochem. Biophy. Res. Comm. 129, 965-971 https://doi.org/10.1016/0006-291X(85)91985-0
  28. Maget-Dana, R., M. Ptak, F. Peypoux, and G. Michel. 1985. Poreforming properties of iturin A, a lipopeptide antibiotic. Biochem. Biophy. Acta. 815, 405-409 https://doi.org/10.1016/0005-2736(85)90367-0
  29. Maget-Dana, R. and F. Peypoux. 1994. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87, 151-174 https://doi.org/10.1016/0300-483X(94)90159-7
  30. Marahiel, M.A., M.M. Nakano, and P. Zuber. 1993. Regulation of peptide antibiotic production in Bacillus. Mol. Microbiol. 7, 631-636 https://doi.org/10.1111/j.1365-2958.1993.tb01154.x
  31. Martirani, L., M. Varcamonti, G. Naclerio, and M. De Felice. 2002. Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis. Microb. Cell Fact. 1, 1-5 https://doi.org/10.1186/1475-2859-1-1
  32. Mizumoto, S., M. Hirai, and M. Shoda. 2006. Production of lipopeptide antibiotic iturin A using soybean curd residue cultivated with Bacillus subtilis in solid-state fermentation. Appl. Microbiol. Biotechnol. 72, 869-875 https://doi.org/10.1007/s00253-006-0389-3
  33. Mizumoto, S., M. Hirai, and M. Shoda. 2007. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl. Microbiol. Biotechnol. 75, 1267-1274 https://doi.org/10.1007/s00253-007-0973-1
  34. Mizumoto, S. and M. Shoda. 2007. Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl. Microbiol. Biotechnol. 76, 101-108 https://doi.org/10.1007/s00253-007-0994-9
  35. Moyne, A.L., R. Shelby, T.E. Cleveland, and S. Tuzun. 2001. Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J. Appl. Microbiol. 90, 622-629 https://doi.org/10.1046/j.1365-2672.2001.01290.x
  36. Peypoux, F., F. Besson, G. Michel, and L. Delcambe. 1979. Preparation and antibacterial activity upon Micrococcus luteus of derivatives of iturin A, mycosubtilin, and bacillomycin L. antibiotics from Bacillus subtilis. J. Antibiot. 32, 136-140 https://doi.org/10.7164/antibiotics.32.136
  37. Peypoux, F., J.M. Bonmatin, and J. Wallach. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51, 553-563 https://doi.org/10.1007/s002530051432
  38. Phister, T.G., D.J. O'Sullivan, and L.L. Mckay. 2004. Identification of bacilysin, Chlorotetaine, and iturin A produced by Bacillus sp. strain CS93 isolated from pozol, a Mexican fermented maize dough. Appl. Environ. Microbiol. 70, 631-634 https://doi.org/10.1128/AEM.70.1.631-634.2004
  39. Rahman, M.S., T. Ano, and M. Shoda. 2006. Second stage production of iturin A by induced germination of Bacillus subtilis RB14. J. Biotechnol. 125, 513-515 https://doi.org/10.1016/j.jbiotec.2006.03.016
  40. Romero, D., A. de Vincente, R.H. Rakotoaly, S.E. Dufour, J.W. Veening, E. Arrebola, F.M. Cazorla, O. Kuipers, M. Paquot, and A. Perez-Garcia. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20, 430-440 https://doi.org/10.1094/MPMI-20-4-0430
  41. Sieber, S.A. and M.A. Marahiel. 2003. Learning from nature's drug factories: nonribosomal synthesis of macrocyclic peptides. J. Bacteriol. 185, 7036-7043 https://doi.org/10.1128/JB.185.24.7036-7043.2003
  42. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56, 845-857 https://doi.org/10.1111/j.1365-2958.2005.04587.x
  43. Teo, A.Y.L. and H.M. Tan. 2005. Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens. Appl. Environ. Microbiol. 71, 4185-4190 https://doi.org/10.1128/AEM.71.8.4185-4190.2005
  44. Toure, Y., M. Ongena, P. Jacques, A. Guiro, and P. Thonart. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96, 1151-1160 https://doi.org/10.1111/j.1365-2672.2004.02252.x
  45. Walton. R.B. and H.B. Woodruff. 1949. A crystalline antifungal agent, mycosubtilin, isolated from subtilin broth. J. Clin. Invest. 28, 924-926 https://doi.org/10.1172/JCI102180