Distribution of Bacterial Decomposers in Lake Khuvsgul, Mongolia

몽골 훕스굴 호수 수층에서 유기물질 분해세균의 분포

  • Jung, You-Jung (Department of Environmental Science, Kangwon National University) ;
  • Jung, Da-Woon (Department of Environmental Science, Kangwon National University) ;
  • Kim, Ju-Young (Department of Environmental Science, Kangwon National University) ;
  • Zo, Young-Gun (Department of Environmental Science, Kangwon National University) ;
  • Yim, Joung-Han (Polar Biocenter, Korea Polar Research Institute, KORDI) ;
  • Lee, Hong-Kum (Polar Biocenter, Korea Polar Research Institute, KORDI) ;
  • Ahn, Tae-Seok (Department of Environmental Science, Kangwon National University)
  • Received : 2009.02.27
  • Accepted : 2009.04.27
  • Published : 2009.06.30

Abstract

To understand the ecological function of heterotrophic bacterial community in water column of large freshwater lakes in the permafrost zone, we investigated the structure and function of bacterial community in Lake Khuvsgul, Mongolia. Species composition of overall bacterial community was analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments, and bacteria that can be cultured at 10oC were isolated and characterized. Based on the depth profile of environmental parameters, thermocline and chemocline were recognized at the 5~10 m zone of the water column. The stratified DGGE profile indicated that the discontinuity of water properties might influence the structure of bacterial community: band profiles in the 0~5 m zone were diverse with large change by depth, but the profile was relatively stable at the $\geq$10 m zone, with predominance of the band identified as Acidovorax facilis. Bacterial cultures were screened for protease, cellulase, amylase and lipase activity, and 23 isolates were selected for high activity of the hydrolytic enzymes. The isolates were identified based on their 16S rRNA gene sequences. In the surface water (zero meter depth), Acidovorax defluvii and Sphingobacterium faecium with high cellulase activity were present. Flavobacterium succinicans, Mycoplana bullata and A. facilis were stably predominant isolates at 2 m, 5 m, and $\geq$10 m depths, respectively. F. succinicans isolates showed high protease activity while M. bullata isolates showed moderate levels of protease and celluase activity. A. facilis isolates showed either cellulase or lipase activity, exclusively to each other. According to the profile of growth rates of the isolates in the temperature range of $0\sim42^{\circ}C$, the surface-zone (0~5 m) isolates were facultative psychrophiles while isolates from $\geq$10 m depth were typical mesophiles. This stratification is believed to be due to stratified availability of organic materials to the bacterial decomposers. In the water column below the chemoline, the environment is extremely oligotrophic so that the trait of rapid growth in low temperature might not be demanded by deep-lake decomposers. The stratified distribution of community composition and decomposer activity in Lake Khuvsgul implies that ecological functions of bacterial community in lakes of cold region are sharply divided by water column stratification.

동토지대 거대 담수호에 서식하는 종속영양세균 군집의 생태학적 기능을 파악하기 위하여, 몽골 북부의 동토지대 경계에 위치한 스굴 호수에서, 전체 세균군집의 구조와 유기물질을 분해할 수 있는 미생물 군집의 구조를 수심별로 비교 분석하였다. 환경인자 분석결과, 수심 5~10 m 사이에서 thermocline과 chemocline이 관찰되었다. Denaturing gradient gel electrophoresis (DGGE)로 전체 세균군집의 구조를 수심별로 비교한 결과 0~5 m 사이에서 군집구조의 변화가 컸고, 10 m 이상에서는 Acidovorax facilis를 위주로 비교적 안정된 군집을 형성하였다. $10^{\circ}C$에서 고분자 유기물 분해 활성도(protease, cellulase, amylase, lipase)가 높은 균주들을 탐색하여 23개 균주를 선별하였다. 표층수로부터 Acidovorax defluvii와 Sphingobacterium faecium이 분리되었는데 cellulase 활성이 높았다. 수심2 m, 5 m 및 10 m 이상의 시료에서 분리된 세균군집은 각각, Flavobacterium succinicans, Mycoplana bullata, A. facilis가 우점하였다. F. succinicans는 높은 protease 활성을 보였고, 수심 5 m의 M. bullata는 protease와 cellulase 활성이 있었지만, 상대적으로 약한 활성을 보였다. 수심10 m의 A. facilis 균주들은 cellulase 또는 lipase를 서로 배타적으로 발현하였다. 온도별 성장속도를 분석한 결과 표층(0~5m) 세균들은 기회성 호냉성 세균이었고, 심층($\geq$10m)에서 분리된 균주들은 $10^{\circ}C$ 이하에서 성장률이 낮았다. 심층의 저온 빈영양 상태 때문에 심층 세균들간의 경쟁에서 빠른 저온 성장이 요구되지 않고, 상층의 경우 육상 또는 식물 플랑크톤으로부터 영양물질이 공급되므로 저온에서 빠른 성장 속도를 보이는 세균들이 상층에 주로 분포하는 것으로 해석되었다. 따라서 스굴 호수수층에서 관찰된 세균군집의 종 분포와 물질분해 작용의 성층화는, 한냉대 빈영양 담수 호수에서 분해자 군집들의 생태학적 기능이 0~10 m 수심의 표층에 집중됨을 시사하였다.

Keywords

References

  1. 김명운, 강찬수, 김상종. 1989. 소양호 수중 생태계에서의 세균 생체물질량의 분포. 한국미생물학회지 27, 130-138
  2. 홍선희, 김옥선, 전선옥, 유재준, 안태석. 2002. 해빙기 바이칼호에서 부유세균과 aggregates에 부착한 세균의 군집구조. 한국미생물학회지 38, 192-197
  3. Anderson, K.L. 2000. Degradation of cellulose and starch by anaerobic bacteria, p. 359-386. In R. Doyle (ed.), Glycomicrobiology, Kluwer Academic/Plenum Press, New York, N.Y., USA.
  4. Charles, Jr., E.C. 2003. Nature's giant molecules: The plant kingdom, pp. 307-327. Giant Molecules (2nd ed)
  5. Cole, J.R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R.J. Farris, A.S. Kulam-Syed-Mohideen, D.M. McGarrell, T. Marsh, G.M. Garrity, and J.M. Tiedje. 2009. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141-145 https://doi.org/10.1093/nar/gkn879
  6. Garrity, G.M., T.G. Lilburn, J.R. Cole, S.H. Harrison, J. Euzeby, and B.J. Tindall. 2007. Taxonomic outline of the bacteria and archaea, release 7.7. Michigan State University Board of Trustees, East Lansing, MI, USA.
  7. Karabanov, E., D. Williamsa, M. Kuzminb, V. Sidelevac, G. Khursevicha, A. Prokopenkoa, E. Solotchinae, L. Tkachenkob, S. Fedenyad, E. Kerberb, A. Gvozdkovb, O. Khlustovf, E. Bezrukovaf, P. Letunovaf, and S. Krapivinaf. 2004. Ecological collapse of Lake Baikal and Lake Hovsgol ecosystems during the Last Glacial and consequences for aquatic species diversity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 209, 227-243 https://doi.org/10.1016/j.palaeo.2004.02.017
  8. Liesack, W., S. Sela, H. Bercovier, C. Pitulle, and E. Stackebrandt. 1991. Complete nucleotide sequence of the Mycobacterium leprae 23S and 5S rRNA genes plus flanking regions and their potential in designing diagnostic oligonucleotide probes. FEBS Lett. 281, 114-118 https://doi.org/10.1016/0014-5793(91)80372-A
  9. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700
  10. Prokopenkoa, A.A., M.I. Kuzminb, D.F. Williamsa, V.F. Geletyb, G.V. Kalmychkovb, A.N. Gvozdkovb, and P.A. Solotchin. 2005. Basin-wide sedimentation changes and deglacial lake-level rise in the Hovsgol basin, NW Mongolia. Quat. Int. 136, 59-69 https://doi.org/10.1016/j.quaint.2004.11.008
  11. Siripattanakul, S., W. Wirojanagud, J. McEvoy, T. Limpiyakorn, and E. Khan. 2009. Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization. J. Appl. Microbiol. 106, 986-992 https://doi.org/10.1111/j.1365-2672.2008.04075.x
  12. Wang, Q., G.M. Garrity, J.M. Tiedje, and J.R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261-5267 https://doi.org/10.1128/AEM.00062-07