Deterimination of an Optimal Time Point for Analyzing Transcriptional Activity and Analysis of Transcripts of Avian Influenza Virus H9N2 in Cultured Cell

배양세포에서 Semi-quantitative RT-PCR에 의한 조류인플루엔자 H9N2의 전사활성 분석 최적 시기 결정 및 전사체 분석

  • Na, Gi-Youn (School of Biological Sciences, Inje University) ;
  • Lee, Young-Min (Department of Microbiology, College of Medicine, Chungbuk University) ;
  • Byun, Sung-June (Animal Biotechnology Division, National Institute of Animal Science) ;
  • Jeon, Ik-Soo (Planning and Coordination Division, National Institute of Animal Science) ;
  • Park, Jong-Hyeon (National Veterinary Research and Quarantine Services) ;
  • Cho, In-Soo (National Veterinary Research and Quarantine Services) ;
  • Joo, Yi-Seok (National Veterinary Research and Quarantine Services) ;
  • Lee, Yun-Jung (National Veterinary Research and Quarantine Services) ;
  • Kwon, Jun-Hun (National Veterinary Research and Quarantine Services) ;
  • Koo, Yong-Bum (School of Biological Sciences, Inje University)
  • 나기윤 (인제대학교 생명과학부) ;
  • 이영민 (충북대학교 의과대학 미생물학교실) ;
  • 변승준 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 전익수 (농촌진흥청 국립축산과학원 기획조정과) ;
  • 박종현 (국립수의과학검역원) ;
  • 조인수 (국립수의과학검역원) ;
  • 주이석 (국립수의과학검역원) ;
  • 이윤정 (국립수의과학검역원) ;
  • 권준헌 (국립수의과학검역원) ;
  • 구용범 (인제대학교 생명과학부)
  • Received : 2009.09.07
  • Accepted : 2009.09.25
  • Published : 2009.09.30

Abstract

The transcription of mRNA of avian influenza virus is regulated temporally during infection. Therefore, the measurement of transcript level in host cells should be performed before viral release from host cells because errors can occur in the analysis of the transcript levels if the viruses released from the infected cells re-infect cells. In this study, the timing of viral release was determined by measuring the level of viral RNA from viruses released from H9N2-infected chicken fibroblast cell line UMNSAH/DF-1 by semi-quantitative RT-PCR. The viral genomic RNA was isolated together with mouse total RNA which was added to the collected medium as carrier to monitor the viral RNA recovery and to use its GAPDH as an internal control for normalizing reverse transcription reaction as well as PCR reaction. It was found that viral release of H9N2 in the chicken fibroblast cell line UMNSAH/DF-1 took between 16 and 20 h after infection. We measured all 8 viral mRNA levels. Of the 8 transcripts, 7 species of viral mRNAs (each encoding HA, NA, PB1, PB2, NP, M, NS, respectively) except PA mRNA showed robust amplification, indicating these mRNA can be used as targets for amplification to measure transcript levels. These results altogether suggest that the method in this study can be used for screening antiviral materials against viral RNA polymerase as a therapeutic target.

조류인플루엔자 바이러스 mRNA의 전사는 감염 동안에 시간적으로 조절되어진다. 감염 후 세포 내에서 증식된 바이러스가 방출되어 세포를 다시 감염하게 되면 전사 수준 분석에 오차가 발생할 수 있으므로 바이러스가 방출 되기 이전에 전사 수준의 측정이 이루어져야 한다. 본 연구에서는 조류인플루엔자 H9N2를 감염시킨 닭의 섬유아세포주 UMNSAH/DF-1에서 바이러스 감염 후 증식된 바이러스의 방출까지의 시간을 측정하기 위하여 배양액 중에 방출되는 바이러스 RNA 게놈 수준을 semi-quantitative RT-PCR에 의해 측정하였다. 배양액 중의 바이러스 RNA 게놈의 분리 과정에서 발생할 수 있는 RNA 회수율의 오차를 보정하기 위해 mouse의 전체 RNA를 배양액 시료에 넣어서 바이러스 RNA 분리에 carrier로 사용하고 그 속에 포함된 mouse의 GAPDH를 RNA를 역전사 반응 및 PCR의 내부 대조 RNA로 사용하였다. 그 결과 감염 후 방출까지 16~20시간이 소요됨을 알 수 있었다. 따라서 감염 후 12시간 후에 세포 내에서 합성된 8종의 전사체의 수준을 측정하였다. 8종의 mRNA 중 PA를 제외한 7종의 mRNA (HA, NA, PB1, PB2, NP, M, NS를 암호화하는 mRNA)는 뚜렷한 증폭 band를 보였으며, 이것은 이들이 전사활성 측정에 사용될 수 있는 것으로 나타났다. 이상과 같은 전사수준의 측정 방법은 조류인플루엔자 바이러스의 RNA polymerase를 표적으로 한 항바이러스제의 검색에 사용할 수 있을 것으로 보인다.

Keywords

References

  1. Cheng, C., L. Yao, A. Chen, R. Jia, L. Huan, J. Guo, H. Bo, Y. Shu, and Z. Zhang. 2009. Inhibitory effect of small interfering RNA specific for a novel candidate target in PB1 gene of influenza A virus. J. Drug Target. 17, 133-139 https://doi.org/10.1080/10611860802473048
  2. Collin, N. and X. de Radigus. 2009. Vaccine production capacity for seasonal and pandemic (H1N1) 2009 influenza. Vaccine 27, 5184-5186 https://doi.org/10.1016/j.vaccine.2009.06.034
  3. Gong, J., H. Fang, M. Li, Y. Liu, K. Yang, Y. Liu, and W. Xu. 2009. Potential targets and their relevant inhibitors in anti-influenza fields. Curr. Med. Chem. 16, 3716-3739 https://doi.org/10.2174/092986709789104984
  4. Hoffmann, E., J. Stech, Y. Guan, R.G. Webster, and D.R. Perez. 2001. Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 146, 2275-2289 https://doi.org/10.1007/s007050170002
  5. Mukhtar, M.M., S. Li, W. Li, T. Wan, Y. Mu, W. Wei, L. Kang, S.T. Rasool, Y. Xiao, Y. Zhu, and J. Wu. 2009. Single-chain intracellular antibodies inhibit influenza virus replication by disrupting interaction of proteins involved in viral replication and transcription. Int. J. Biochem. Cell. Biol. 41, 554-560 https://doi.org/10.1016/j.biocel.2008.07.001
  6. Nakazawa, M., S.E. Kadowaki, I. Watanabe, Y. Kadowaki, M. Takei, and H. Fukuda. 2008. PA subunit of RNA polymerase as a promising target for anti-influenza virus agents. Antiviral Res. 78, 194-201 https://doi.org/10.1016/j.antiviral.2007.12.010
  7. Shapiro, G.I., T. Gurney, Jr., and R.M. Krug. 1987. Influenza virus gene expression: control mechanisms at early and late times of infection and nuclear-cytoplasmic transport of virus-specific RNAs. J. Virol. 61, 764-773
  8. Spackman, E. 2008. A brief introduction to the avian influenza virus. Methods Mol. Biol. 436, 1-6 https://doi.org/10.1007/978-1-59745-279-3_1
  9. Sui, J., W.C. Hwang, S. Perez, G. Wei, D. Aird, L.M. Chen, E. Santelli, B. Stec, G. Cadwell, M. Ali, H. Wan, A. Murakami, A. Yammanuru, T. Han, N.J. Cox, L.A. Bankston, R.O. Donis, R.C. Liddington, and W.A. Marasco. 2009. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265-273 https://doi.org/10.1038/nsmb.1566
  10. Thathaisong, U., S. Maneewatch, K. Kulkeaw, K. Thueng-In, O. Poungpair, P. Srimanote, T. Songserm, P. Tongtawe, P. Tapchaisri, and W. Chaicumpa. 2008. Human monoclonal single chain antibodies (HuScFv) that bind to the polymerase proteins of influenza A virus. Asian Pac. J. Allergy Immunol. 26, 23-35
  11. Uchide, N., K. Ohyama, T. Bessho, and T. Yamakawa. 2002. Semi-quantitative RT-PCR-based assay, improved by Southern hybridization technique, for polarity-specific influenza virus RNAs in cultured cells. J. Virol. Methods 106, 125-134 https://doi.org/10.1016/S0166-0934(02)00143-X