Clean-up of the Crude Oil Contaminated Marine Sediments Through Biocarrier-Mediated Bioaugmentation

생물담체 활용 생물접종에 의한 원유로 오염된 해양토양의 정화

  • Ekpeghere, Kelvin I. (Division of Civil and Env. Eng., Korea Maritime University) ;
  • Bae, Hwan-Jin (Department of Marine Env. Eng. and Institute of Marine Industry, Gyeongsang National University) ;
  • Kwon, Sung-Hyun (Department of Marine Env. Eng. and Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Byung-Hyuk (Environ. Bio-Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Duck-Ja (Eulji Entech, Inc.) ;
  • Kim, Hee-Shik (Environ. Bio-Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Koh, Sung-Cheol (Division of Civil and Env. Eng., Korea Maritime University)
  • ;
  • 배환진 (경상대학교 해양환경공학과 및 해양산업연구소) ;
  • 권성현 (경상대학교 해양환경공학과 및 해양산업연구소) ;
  • 김병혁 (한국생명공학연구원 환경바이오센터) ;
  • 박득자 (을지엔텍(주)) ;
  • 김희식 (한국생명공학연구원 환경바이오센터) ;
  • 고성철 (한국해양학교 건설환경공학부)
  • Received : 2009.12.08
  • Accepted : 2009.12.18
  • Published : 2009.12.31

Abstract

This study was carried out to develop an effective biocarrier-mediated bioaugmentation technology which will be useful for remediation of the crude oil-contaminated marine sediments. Enrichment of several microbial communities was made from several oil-polluted seashore sites and the two distinctively functional consortia have been successfully selected. These two consortia were grown together and used to manufacture the microbial agents for bioaugmentation of marine sediments polluted with crude oil. The most dominant species in the mixed culture was identified as Alcanivorax borkumensis based on pure culture and DGGE analysis. Bioaugmentation of oil-polluted marine sediments with the microbial agent MA-2 formulated using the mixed culture and biocarriers (activated carbon and minerals) was more effective, especially in combination with an oxygen producing (releasing) compound (ORC). Ninty percent of TPH was removed in the presence of ORC in 35 days while 74% in the absence of ORC. This indicated that the indigenous consortial degraders could be immobilized on the active carbon as a biocarrier to manufacture microbial agents and then effectively bioaugmented for remediation of the oil-polluted sediments.

본 연구의 목표는 생물담체(biocarrier)에 의한 생물접종기술(bioaugmentation)을 개발하여 원유로 오염된 해양저질의 정화에 활용하고자 하는 것이다. 몇 군데의 원유로 오염된 해안으로부터 수 가지의 분해미생물군집을 농화배양하여 평가한 결과 기능적으로 상이한 2가지의 미생물군집을 분리하였다. 이들 미생물군집을 혼합 배양한 경우 Alcanivorax sp.가 우점종을 이루는 것으로 나타났으며, 이 군집과 대나무활성탄 등을 이용하여 미생물제제(MA-2)를 제조하여 사질의 원유오염 해안토양에 처리할 경우 5주 후 산소발생제의 존재하에 90% 이상의 TPH 분해력을 나타내었다. 또한 점질의 토양도 미생물제제(MA-1)를 처리할 경우 5주 후 71% 정도의 분해율을 나타냈다. 이는 분리된 토착미생물군집을 활용하여 오염토양의 처리에 효과적으로 활용할 수 있음을 의미한다. 한편 계면활성제의 고농도의 처리는 분해미생물의 작용을 억제하므로 적절한 농도의 확인이 필요하며 점토질의 토양의 정화를 위해서는 적절한 통기를 시키는 방법(산소발생제 투여, 기계적 aeration 등)의 활용이 요구된다.

Keywords

References

  1. 고성환, 이홍금, 김상진. 1998. Hydrocarbon uptake modes에 따른 유류분해 미생물 혼합제의 원유분해능. 한국생물공학회지 13, 606-614
  2. 김병혁, 백경화, 조대현, 성열붕, 안치용, 오희목, 고성철, 김희식. 2009. 경기도 김포, 인천 서구지역 소하천의 PCE 탈염소화 군집의 선별 및 다양성 분석. 한국미생물학회지 45, 140-147
  3. 서은영, 송홍규. 1994. 토양미생물군집의 개체수와 활성도에 미치는 경유의 영향. 한국미생물학회지 32, 163-171
  4. 최경숙, 김순한, 정영기, 장경립, 이태호. 1997. Tsukamurella sp. 26A에 의한 계면활성제의 생산. 한국미생물학회지 33, 187-192
  5. Al-Awadhi, H., R.H. Al-Hasan, N.A. Sorkhoh, S. Salamah, and S.S. Radwan. 2003. Establishing oil-degrading biofilms on gravel particles and glass plates. Int. Biodeter. Biodegrad. 51, 181-185 https://doi.org/10.1016/S0964-8305(02)00140-3
  6. Alonso-Gutierrez, J., A. Figueras, J. Albaiges, N. Jimenez, M. Vinas, A.M. Solanas, and B. Novoa. 2009. Bacterial communities from shoreline environments (costa da morte, northwestern Spain) affected by the prestige oil spill. Appl. Environ. Microbiol. 75, 3407-3418 https://doi.org/10.1128/AEM.01776-08
  7. Altas, R.M. 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45, 180-209
  8. Altas, R.M. and R. Bartha. 1992. Hydrocarbon biodegradation and oil spill bioremediation. Adv. Microb. Ecol. 12, 287-338
  9. Bak, Y.C., K.J. Cho, and J.H. Choi. 2005. Production and $CO_2$ adsorption characteristics of activated carbon from Bamboo by $CO_2$ activation method. Kor. Chem. Engineer. Res. 43, 146-152
  10. Balba, M.T., N. Al-Awadhi, and R. Al-Daher. 1998. Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J. Microbiol. Methods 32, 155-164 https://doi.org/10.1016/S0167-7012(98)00020-7
  11. Bonin, P., J.F. Rontani, and L. Bordenave. 2001. Metabolic differences between attached and free-living marine bacteria: inadequacy of liquid cultures for describing in situ bacterial activity. FEMS Microbiol. Ecol. 194, 111-119 https://doi.org/10.1111/j.1574-6968.2001.tb09455.x
  12. Cappello, S., R. Denaroa, M. Genovesea, L. Giulianoa, and M.M. Yakimova. 2007. Predominant growth of Alcanivorax during experiments on "oil spill bioremediation" in mesocosms. Microbiol. Res. 162, 185-190 https://doi.org/10.1016/j.micres.2006.05.010
  13. Choi, B.R., V.H. Pham, S.J. Park, S.J. Kim, D.H. Roh, and S.K. Rhee. 2009. Biochemistry ; Characterization of facultative sulfuroxidizing Marinobacter sp. BR13 isolated from marine sediment of Yellow Sea, Korea. J. Appl. Biol. Chem. 52, 309-314 https://doi.org/10.3839/jksabc.2009.055
  14. Coulon, F., B.A. McKew, A.M. Osborn, T.J. McGenity, and K.N. Timmis. 2007. Effects of temperature and biostimulation on oildegrading microbial communities in temperate estuarine waters. Environ. Microbiol. 9, 177-186 https://doi.org/10.1111/j.1462-2920.2006.01126.x
  15. De Acevedo, G.T. and M.J. McInnerney. 1996. Emulsifying activity in themophilic and extremely thermophlic microorganisms. J. Inst. Microbiol. 16, 1-7 https://doi.org/10.1007/BF01569914
  16. Harayama, S., Y. Kasai, and A. Hara. 2004. Microbial communities in oil-contaminated seawater. Curr. Opin. Biotech. 15, 205-214 https://doi.org/10.1016/j.copbio.2004.04.002
  17. Kodama, Y., L.I. Stiknowati, A. Ueki, K. Ueki, and K. Watanabe. 2008. Thalassospira tepidiphila sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 58, 711-715 https://doi.org/10.1099/ijs.0.65476-0
  18. Lianga, Y., X. Zhanga, D. Daib, and G. Lia. 2009. Porous biocarrier-enhanced biodegradation of crude oil contaminated soil. Int. Biodeter. Biodegr. 63, 80-87 https://doi.org/10.1016/j.ibiod.2008.07.005
  19. Nakamura, S., Y. Sakamoto, M. Ishiyama, D. Tanaka, K. Kunii, K. Kubo, and C. Sato. 2007. Characterization of two oil-degrading bacterial groups in the Nakhodka oil spill. Int. Biodeter. Biodegr. 60, 202-207 https://doi.org/10.1016/j.ibiod.2007.06.004
  20. Omar, S.H., U. Budecker, and H.J. Rehm. 1990. Degradation of oily sludge from a flotation unit by free and immobilized microorganisms. Appl. Microbiol. Biotechnol. 34, 259-263 https://doi.org/10.1007/BF00166792
  21. Passeri, A., M. Schmidt, T. Haffner, V. Wray, S. Lang, and F. Wagner. 1992. Marine biosurfactants. IV. Production, characterization and biosynthesis of an anionic glucose lipid from the marine bacterial strain MM1. Appl. Microbiol. Biotechnol. 37, 281-286 https://doi.org/10.1007/BF00210978
  22. Roenberg, E. and E.Z. Ron. 1997. Bioemulsans: microbial polymeric emulsifiers. Curr. Opin. Biotechnol. 8, 313-316 https://doi.org/10.1016/S0958-1669(97)80009-2
  23. Yoon, J.H., T.K. Oh, and Y.H. Park. 2005. Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 55, 71-75 https://doi.org/10.1099/ijs.0.63233-0
  24. Zhang, H., A. Kallimanis, A.I. Koukkou, and C. Drainas. 2004. Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl. Microbiol. Biotechnol. 65, 124-131 https://doi.org/10.1007/s00253-004-1614-6
  25. Zhang, Y. and R.M. Miller. 1994. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl. Environ. Microbiol. 60, 2101-2106