Effect of Tyrosinase and Polyphenol Compounds on Hydrogelation of Silk Fibroin

실크 피브로인 수화 겔의 형성에 미치는 티로시나아제 및 폴리페놀 화합물의 영향

  • Park, Ji-Hun (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Jeong, Lim (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University) ;
  • Park, Won-Ho (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University)
  • 박지훈 (충남대학교 바이오응용화학부 유기소재.섬유시스템) ;
  • 정임 (충남대학교 바이오응용화학부 유기소재.섬유시스템) ;
  • 박원호 (충남대학교 바이오응용화학부 유기소재.섬유시스템)
  • Received : 2009.01.23
  • Accepted : 2009.02.04
  • Published : 2009.04.30

Abstract

The formation of silk fibroin (SF) hydrogel can be adjusted by changing physical conditions such as concentration of SF aqueous solution, temperature, pH and salts. In this study, tyrosinase (Tyr), which is an enzyme catalyzing the oxidation of phenols such as tyrosine, was used to decrease the gelation time of SF aqueous solution under a fixed conditions. Tyr oxidizes a broad range of phenols into very reactive o-quinones, and consequently quinones undergo non-enzymatic reactions with various nucleophiles. So it is expected that the gelation time of SF aqueous solution could be decreased by polyphenol compound such as caffeic acid and chlorogenic acid. The color of SF aqueous solutions containing Tyr was changed into deeper yellow with Tyr concentration, and also the gelation time of SF aqueous solution slightly decreased. However, the effect of Tyr concentration on gelation time of SF aqueous solution was not significant due to the locational hindrance of tyrosyl residues in SF. Absorbance at 550 nm also showed conformational transition (random coil to $\beta$-sheet conformation) of SF structure. When polyphenol compounds were added into SF/Tyr aqueous solution, the gelation time slightly decreased. However, the phase separation occurred when polyphenol compounds more than 5 mM were added. The results obtained in this study indicate that enzyme and additives have a potential to regulate the gelation behavior of SF aqueous solution, to some extent.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. A. Matsumoto, J. Chen, A. L. Collete, U. J. Kim, G. H. Altman, P. Cebeand, and D. L. Kaplan, 'Mechanism of Silk Fibroin Sol-Gel Transitions', J Phys Chem B, 2006, 110, 21630-21638 https://doi.org/10.1021/jp056350v
  2. C. Vepari and D. L. Kaplan, 'Silk as a Biomaterial', Prog Polym Sci, 2007, 32, 991-1007 https://doi.org/10.1016/j.progpolymsci.2007.05.013
  3. P. Monti, P. Taddei, G. Freddi, T. Asakura, and M. Tsukada, 'Raman Spectroscopic Characterization of Bombyx mori Silk Fibroin: Raman Spectrum of Silk I', Journal of Raman Spectroscopy, 2001, 32, 103-107 https://doi.org/10.1002/jrs.675
  4. T. Asakura, K. Suita, T. Kameda, S. Afonin, and A. S. Ulrich, 'Structural Role of Tyrosine in Bombyx mori S ilk Fibroin, Studied by Solid-state NMR and Molecular Mechanics on Peptide Prepared as Silk I and II', Magnetic Resonance in Chemistry, 2004, 42, 258-266 https://doi.org/10.1002/mrc.1337
  5. B. M. Min, L. Jeong, K. Y. Lee, and W. H. Park, 'Regenerated Silk Fibroin Nanofibers: Water Vapor-Induced Structural Changes and Their Effects on the Behavior of Normal Human Cells', Macromol Biosci, 2006, 6, 285-292 https://doi.org/10.1002/mabi.200500246
  6. R. Nazarov, H. J. Jin, and D. L. Kaplan, 'Porous 3-D Scaffolds from Regenerated Silk Fibroin', Biomacromolecules, 2004, 5, 718-726 https://doi.org/10.1021/bm034327e
  7. K. Y. Lee and D. J. Mooney, 'Hydrogels for Tissue Engineering', Chem Rev, 2001, 101, 1869-1879 https://doi.org/10.1021/cr000108x
  8. U. J. Kim, J. H. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, 'Structure and Properties of Silk Hydrogels', Biomacromolecules, 2004, 5, 786-792 https://doi.org/10.1021/bm0345460
  9. H. J. Jin and D. L. Kaplan, 'Mechanism of Silk Processing in Insects and Spiders', Nature, 2003, 424, 1057-1061 https://doi.org/10.1038/nature01809
  10. R. Valluzzi, S. Szela, P. Avtges, D. Kirschner, and D. L. Kaplan, 'Methionine Redox Controlled Crystallization of Biosynthetic Silk Spidroin', J Phys Chem B, 1999, 103, 11382-11392 https://doi.org/10.1021/jp991363s
  11. S. Y. Seo, V. K. Sharma, and N. Sharma, 'Mushroom Tyrosinase: Recent Prospects', J Agric Food Chem, 2003, 51, 2837-2853 https://doi.org/10.1021/jf020826f
  12. C. W. G. van Gelder, W. H. Flurkey, and H. J. Wichers, 'Sequence and Structural Features of Plant and Fungal Tyrosinases', Photochemistry, 1997, 45, 1309-1323 https://doi.org/10.1016/S0031-9422(97)00186-6
  13. A. S. Ferrer, J. N. Rodriguez-Lopez, F. G. Canovas, and F. G. Carmona, 'Tyrosinase : A Comprehensive Review of Its Mechanism', Biochimica et Biophysica Acta 1995, 1247, 1-11 https://doi.org/10.1016/0167-4838(94)00204-T
  14. H. Yamamoto, S. Kuno, A. Nagai, A. Nishida, S. Yamauchi, and K. Ikeda, 'Insolubilizing and Adhesive Studies of Water-soluble Synthetic Model Proteins', Int J Biol Macromol, 1990, 12, 305-310 https://doi.org/10.1016/0141-8130(90)90019-7
  15. J. A. Gerrard, S. E. Fayle, and K. H. Sutton, 'Covalent Protein Adduct Formation and Protein Cross-linking Resulting from the Maillard Reaction between Cyclotene and a Model Food Protein', J Agric Food Chem, 1999, 47, 1183-1188 https://doi.org/10.1021/jf980811a
  16. G. Wang, J. J. Xu, L. H. Ye, J. J. Zhu, and H. Y. Chen, 'Highly Sensitive Sensors Based on the Immobilization of Tyrosinase in Chitosan', Bioelectrochemistry, 2002, 57, 33-38 https://doi.org/10.1016/S1567-5394(01)00174-8
  17. K. Komori, K. Yatagai, and T. Tatsuma, 'Activity Regulation of Tyrosinase by Using Photoisomerizable Inhibitors', J Biotech, 2004, 108, 11-16 https://doi.org/10.1016/j.jbiotec.2003.10.010
  18. M. Y. Moridani, H. Scobie, A. Jamshidzadeh, P. Salehi, and P. J. O'brien, 'Caffeic Acid, Chlorogenic Acid, and Dihydrocaffeic Acid Metabolism: Glutathione Conjugate Formation', Drug Metabolism and Disposition, 2001, 29, 1432-1439
  19. G. D. Kang, K. H. Lee, C. S. Ki, and Y. H. Park, 'Crosslinking Reaction of Phenolic Side Chains in Silk Fibroin by Tyrosinase', Fibers Polym, 2004, 5, 234-238 https://doi.org/10.1007/BF02903006
  20. J. H. Whang and B. M. Lee, 'Inhibitory Effects of Plant Extracts on Tyrosinase, L-DOPA Oxidation, and Melanin Synthesis', Journal of Toxicology and Environmental Health-Part A-Current Issues, 2007, 70, 393-407 https://doi.org/10.1080/10937400600882871
  21. V. S. Nithianandam and S. Erhan, 'Quinone-amine Polymers: 18. A Novel Method for the Synthesis of Poly(alkyl aminoquinone)s', Polymer, 1998, 39, 4095-4098 https://doi.org/10.1016/S0032-3861(97)10301-9
  22. M. Yu, J. Y. Hwang, and T. J. Deming, 'Role of l-3,4-Dihydroxyphenylalanine in Mussel Adhesive Proteins', J Am Chem Soc, 1999, 121, 5825-5826 https://doi.org/10.1021/ja990469y
  23. T. Chen, H. D. Embree, L. Q. Wu, and G. F. Payne, 'In Vitro Protein-polysaccharide Conjugation: Tyrosinasecatalyzed Conjugation of Gelatin and Chitosan', Biopolymers, 2002, 64, 292-302 https://doi.org/10.1002/bip.10196
  24. T. Kameda, Y. Ohkawa, K. Yoshizawa, E. Nakano, T. Hiraoki, A. S. Ulrich, and T. Asakura, 'Dynamics of the Tyrosine Side Chain in Bombyx mori and Samia cynthia ricini Silk Fibroin Studied by Solid State 2H NMR', Macromolecules, 1999, 32, 8491-8495 https://doi.org/10.1021/ma991344g
  25. X. G. Li, L. Y. Wu, M. R. Huang, H. L. Shao, and X. C. Hu, 'Conformational Transition and Liquid Crystalline State of Regenerated Silk Fibroin', Biopolymers, 2008, 88, 497-505
  26. B. S. Aytar and U. Bakir, 'Preparation of Cross-linked Tyrosinase Aggregates', Process Biochemistry, 2008, 43, 125-131 https://doi.org/10.1016/j.procbio.2007.11.001
  27. I. Gulcin, 'Antioxidant Activity of Caffeic Acid (3,4-dihydroxycinnamic acid)', Toxicology, 2006, 217, 213-220 https://doi.org/10.1016/j.tox.2005.09.011