DOI QR코드

DOI QR Code

Numerical Study on the Motion Characteristics of a Freely Falling Two-Dimensional Circular Cylinder in a Channel

채널 내 자유 낙하하는 2차원 원형 실린더의 운동 특성에 관한 수치적 연구

  • 정해권 (부산대학교 대학원 기계공학부) ;
  • 윤현식 (부산대학교 첨단조선공학연구센터) ;
  • 하만영 (부산대학교 기계공학부)
  • Published : 2009.07.01

Abstract

A two-dimensional circular cylinder freely falling in a channel has been simulated by using immersed boundary - lattice Boltzmann method (IB-LBM) in order to analyze the characteristics of motion originated by the interaction between the fluid flow and the cylinder. The wide range of the solid/fluid density ratio has been considered to identify the effect of the solid/fluid density ratio on the motion characteristics such as the falling time, the transverse force and the trajectory in the streamwise and transverse directions. In addition, the effect of the gap between the cylinder and the wall on the motion of a two-dimensional freely falling circular cylinder has been revealed by taking into account a various range of the gap size. As the cylinder is close to the wall at the initial dropping position, vortex shedding in the wake occurs early since the shear flow formed in the spacing between the cylinder and the wall drives flow instabilities from the initial stage of freely falling. In order to consider the characteristics of transverse motion of the cylinder in the initial stage of freely falling, quantitative information about the cylinder motion variables such as the transverse force, trajectory and settling time has been investigate.

Keywords

References

  1. Cate, A. ten, Nieuwstad, C. H., Derksen, J.J. and Van den Akker, H. E. A., 2002, 'Particle Imaging Velocimetry Experiments and Lattice-Boltzmann Simulations on a Single Sphere Settling Under Gravity,' Phys. Fluids, Vol.14, No.11, pp. 4012-4025 https://doi.org/10.1063/1.1512918
  2. Horowitz, M. and Williamson, C. H. K., 2006, 'Dynamics of a Rising and Falling Cylinder,' J. Fluids Struct., Vol.22, pp.837-843 https://doi.org/10.1016/j.jfluidstructs.2006.04.012
  3. Jenny, M., Dusek, D. and Bouchet, G., 2004, 'Instabilities and Transition of a Sphere Falling or Ascending Freely in a Newtonian Fluid,' J. Fluid Mech., Vol.508, pp.201-239 https://doi.org/10.1017/S0022112004009164
  4. Veldhuis, C. H. J. and Biesheuvel, A., 2007, 'An Experimental Study of the Regimes of Motion of Spheres Falling or Ascending Freely in a Newtonian Fluid,' Int. J. Multiphase Flow, Vol.33, pp.1074-1087 https://doi.org/10.1016/j.ijmultiphaseflow.2007.05.002
  5. Namkoong, K., Choi and H. Yoo, J. Y., 2004, 'Numerical Analysis of Two-Dimensional Motion of a Freely Falling Circular Cylinder in an Infinite Fluid,' Tran. of the KSME B, Vol. 28, No.6, pp.713-725 https://doi.org/10.3795/KSME-B.2004.28.6.713
  6. Namkoong, K., Yoo, J. Y. and Choi, H., 2008, 'Numerical Analysis of Two-Dimensional Motion of a Freely Falling Circular Cylinder in an Infinite Fluid,' J. Fluid Mech., Vol.604, pp.33-53 https://doi.org/10.1017/S0022112008001304
  7. Ladd A. J. C., 1994, 'Numerical Simulation of Particulate Suspensions via a Discretized Boltzmann Equation. Part 1. Theoretical Foundation,' J. Fluid. Mech., Vol. 271, pp. 285-309 https://doi.org/10.1017/S0022112094001771
  8. Ladd A. J. C., 1994, 'Numerical Simulation of Particulate Suspensions via a Discretized Boltzmann Equation. Part 2. Numerical Results,' J. Fluid. Mech., Vol. 271, pp. 311-339 https://doi.org/10.1017/S0022112094001783
  9. Ladd A. J. C. and Verberg R., 2001, 'Lattice Boltzmann Simulations of Particle-Fluid Suspensions,' J. Stat. Phys., Vol. 14, pp. 1191-1251 https://doi.org/10.1023/A:1010414013942
  10. Jones, R. B. and Kutteh, R., 1999, 'Sedimentation of Colloidal Particles Near a Wall: Stokesian Dynamics Simulations,' Phys. Chem. Chem. Phys., Vol.1, pp.2131-2139 https://doi.org/10.1039/a809571j
  11. Feng J., Hu H.H. and Joseph D.D., 1994, 'Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid Part 1. Sedimentation,' J. Fluid. Mech., Vol. 261, pp. 95-134 https://doi.org/10.1017/S0022112094000285
  12. Aidun C. K., Lu Y. and Ding E.J., 1998, 'Direct Analysis of Particulate Suspensions with Inertia Using the Discrete Boltzmann Equation,' J. Fluid. Mech., Vol. 373, pp. 287-311 https://doi.org/10.1017/S0022112098002493
  13. Aidun C. K., Lu Y. and Ding E.J., 2003, 'Dynamics of Particle Sedimentation in a Vertical Channel: Periodic-Doubling Bifurcation and Chaotic Stat,' Phys. Fluids, Vol.15, No.6, pp.1612-1621 https://doi.org/10.1063/1.1571825
  14. Glowinski R., Pan T. W., Hesla T. I. and Joseph D. D., 1999, 'A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows,' Int. J. Multiphase Flow, Vol. 25, pp.755-794 https://doi.org/10.1016/S0301-9322(98)00048-2
  15. Patankar, N. A., Singh, P., Joseph, D. D., Glowinski , R. and Pan, T. W., 2000, 'A New Formulation of the Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows,' Int. J. Multiphase Flow, Vol. 26, pp.1509-1524 https://doi.org/10.1016/S0301-9322(99)00100-7
  16. Glowinski R., Pan T. W., Hesla T. I., Joseph D. D. and Periaux J., 2001, 'A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow,' J. Comp. Phys., Vol. 169, pp. 363-426 https://doi.org/10.1006/jcph.2000.6542
  17. Feng Z.G and Michaelides E. E., 2004, 'The Immersed Boundary-Lattice Boltzmann Method for Solving Fluid-Particles Interaction Problems,' J. Comp. Phys., Vol. 195, pp. 602-628 https://doi.org/10.1016/j.jcp.2003.10.013
  18. Uhlmann M., 2005, 'An Immersed Boundary Method with Direct Forcing for the Simulation of Particulate Flows,' J. Comp. Phys., Vol. 209, pp. 448-476 https://doi.org/10.1016/j.jcp.2005.03.017
  19. Yu, Z., Wachs, A. and Peysson, Y., 2006, 'Numerical Simulation of Particle Sedimentation in Shear-Thinning Fluids with a Fictitious Domain Method,' J. Non-Newtonian Fluid Mech., Vol. 136, pp. 126-139 https://doi.org/10.1016/j.jnnfm.2006.03.015
  20. Yu, Z. and Shao, X., 2007, 'A Direct-Forcing Fictitious Domain Method for Particulate Flows,' J. Comp. Phys., Vol.227, pp.292-314 https://doi.org/10.1016/j.jcp.2007.07.027
  21. Wan, D. and Turek, S., 2007, 'An Efficient Multigrid-FEM Method for the Simulation of Solid-Liquid Two Phase Flows,' J. Comp. Appl. Math., Vol.203, pp.561-580 https://doi.org/10.1016/j.cam.2006.04.021
  22. Wang, Z., Fan, J. and Luo, K., 2008, 'Combined Multi-Direct Forcing and Immersed Boundary Method for Simulating Flows with Moving Particles,' Int. J. Multiphase Flow, Vol. 34, pp.283-302 https://doi.org/10.1016/j.ijmultiphaseflow.2007.10.004
  23. Chen, S. and Doolen. G. D., 1998, 'Lattice Boltzmann Method for Fluid Flows,' Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364 https://doi.org/10.1146/annurev.fluid.30.1.329
  24. Buick J.M. and Greated C.A., 2000, 'Gravity in a Lattice Boltzmann Model,' Phys. Rev. E, Vol. 61, No. 5, pp. 5307-5320 https://doi.org/10.1146/annurev.fluid.30.1.329
  25. Guo, Z., Zheng, C. and Shi, B., 2002, 'Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method,' Phys. Rev. E, Vol.65, pp.046308-1-6 https://doi.org/10.1103/PhysRevE.65.046308
  26. Ding, E. and Aidun, C. K., 2000, 'The Dynamics and Scaling Law for Particles Suspended in Shear Flow with Inertia,' J. Fluid Mech., Vol. 423, pp. 317-344 https://doi.org/10.1017/S0022112000001932
  27. Zettner, C. M. and Yoda, M., 2001, 'Moderate-Aspect-Ratio Elliptical Cylinders in Simple Shear with Inertia,' J. Fluid Mech., Vol. 442, pp. 241-266 https://doi.org/10.1017/S0022112001005006