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SYNOPSIS 

 
Introduction: It is a challenge to design a protein score function which stabilizes the native 
structures of many proteins simultaneously. The coarse-grained description of proteins to 
construct the pairwise-contact score function usually ignores the backbone directionality of 
protein structures. We propose a new two-body score function which stabilizes all native 
states of 1,006 proteins simultaneously. This two-body score function differs from the usual 
pairwise-contact functions in that it considers two adjacent amino acids at two ends of each 
peptide bond with the backbone directionality from the N-terminal to the C-terminal. The 
score is a corresponding propensity for a directional alignment of two adjacent amino acids 
with their local environments.  
Results and Discussion: We show that the construction of a directional adjacency-score 
function was achieved using 1,006 training proteins with the sequence homology less than 
30%, which include all representatives of different protein classes. After parameterizing the 
local environments of amino acids into 9 categories depending on three secondary 
structures and three kinds of hydrophobicity of amino acids, the 32,400 adjacency-scores 
of amino acids could be determined by the perceptron learning and the protein threading. 
These could stabilize simultaneously all native folds of 1,006 training proteins. When these 
parameters are tested on the new distinct 382 proteins with the sequence homology less 
than 90%, 371 (97.1%) proteins could recognize their native folds. We also showed using 
these parameters that the retro sequence of the SH3 domain, the B domain of 
Staphylococcal protein A, and the B1 domain of Streptococcal protein G could not be 
stabilized to fold, which agrees with the experimental evidence. 
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Introduction 
 
Protein energy (score) function which can stabilize the native 

folds of proteins is an important ingredient to study the protein 
folding problem. The nature of real interaction energies between 
atoms in a protein is complicated, thus one of the simple and 
efficient way to study the protein folding problem is to employ a 
coarse-grained description of amino acids in a sequence after 
integrating out the details of a protein. Each amino acid is 
considered as an isotropic point sphere centered at αC  position 
along the backbone of a protein, and the protein energy function is 
computed by adding the interaction energies between amino acids. 
It is widely accepted that the amino acids sequence possesses the 
essential feature of a protein and that its native structure 
corresponds to that of minimum free energy (Anfinsen 1973; 
Maiorov and Crippen 1992; Wolynes et al. 1995; Fersht 1998; Baker 
2000; Mayor et al. 2003). Therefore it is important to develop a 
protein energy function which depends on the sequence of amino 
acids and their properties. If it is successful, such a function should 
be able to stabilize the native folds of as many proteins as possible. 
The basic idea is to develop a score function which can assess the 
compatibility of amino acids sequence to the structures so that the 
native state of a protein can obtain the lowest score against when 
the same sequence of the native state is housed in the competing 
structures (Friedrichs and Wolynes 1989; Bowie et al. 1991; 
Goldstein et al. 1992; Vendruscolo et al. 1999; Dima et al. 2000; 
Salvi and DeLosRios 2003). 

 
Significant achievements were made to construct protein energy 

functions, based on the known structures of proteins in the Protein 
Data Bank (PDB) (http://www.rcsb.org/pdb) (Hobohm et al. 1992; 
Hobohm and Sander 1994; Holm and Sander 1996), which brought 
us a good understanding of the properties of proteins. Bowie et al., 
(1991) developed the one-body score function which can probe the 
compatibility of a sequence against structures of proteins. This has 
stimulated many fold recognition methods to have better assess for 
the native folds (Godzik et al. 1992; Jones et al. 1992; Sippl and 
Weitckus 1992; Bryant and Lawrence 1993; Ouzounis et al. 1993; 
Wilmanns and Eisenberg 1993; Fischer et al. 1996). Miyazawa and 
Jernigan (MJ) (1985, 1996) constructed 20ⅹ20 matrix for the 
pairwise contacts of 20 amino acids using the quasi-chemical 
approximation. The pairwise contact is established when the 
distance between two amino acids is within a threshold distance (for 
example 6.5Å) in 3D-space, but the chemical distance between 
them along the backbone of a protein is larger than three peptide 
bonds unit. MJ matrix is symmetric and the number of independent 
parameter is 210. In MJ construction one basically counts the 
frequency of pairwise contacts of two amino acids which are within 
the threshold distance in the protein structure. Once a set of 
proteins used in the statistical counting of pairwise contacts is given, 
the values of 210 independent parameters are fixed. When MJ 
matrix is subject to stabilize the native states of the same set of 
proteins, it could not stabilize all proteins simultaneously but 
stabilize 70~80% of them. It, however, explained energetic 
characteristics of proteins and has given a great impact on solving 
the protein folding problem. Zhang and Kim (2000) proposed a 
similar approach by expanding the parameter space of amino acids 
after considering the secondary structure (α-helix, β-sheet, other) of 
a protein. Each amino acid can be in one of three secondary 
structures, thus the pairwise contact matrix becomes 60ⅹ60 matrix 
and the number of independent parameters increases to 1,830. 
Their contact matrix could stabilize more than 97% of the 316 
testing proteins, but not all of them. 
 

The aim of a construction of protein energy function is to come up 
with the appropriate global energy function which can stabilize all 
the native states of as many proteins as possible so that the 

sequence in the native structure acquires the lower energy than in 
the decoy structures. In order to achieve the stabilization of the 
native states of many proteins, the optimization schemes such as 
the Z-score method (Friedrichs and Wolynes 1989; Goldstein et al. 
1992) and the perceptron learning method (Krauth and Mezard 
1987; Vendruscolo et al. 1999; Dima et al. 2000; Salvi and 
DeLosRios 2003) have been employed without a complete success. 
Recently Vendruscolo et al. (1999) and Salvi and DeLosRios (2003) 
tried to determine the pairwise contact energy parameters (20ⅹ20 
matrix) employing the perceptron learning of training proteins. They 
showed that only a small set of proteins could be stabilized, and 
sometimes could not stabilize even a single protein. They concluded 
that it is not possible to construct a global protein energy function 
based on only the pairwise contacts of amino acids. The 
parameterization of amino acids used in these works was only the 
identity of 20 amino acids, and it was too simple to account for the 
energetics of proteins. However, the inclusion of the local 
environments of amino acids, such as the local secondary structure, 
the solvent accessibility (hydrophobicity), and the polarity, would 
improve the stabilization capability of the proposed energy function 
for many proteins. In fact, it was shown that one could construct 
one-body energy function in terms of the propensities for amino 
acids to be at the given local environments, which stabilized 
simultaneously all native states of 600 proteins using the perceptron 
learning and the protein threading (Chang et al. 2001). One could 
also construct the two-body energy function after taking into account 
of the local environments of amino acids and postulate the various 
forms of energy functions. Whether the postulated forms of energy 
functions are amenable to stabilize all the native states of training 
proteins in the perceptron learning process is a tough measure for 
the success of design and construction of a global protein energy 
function. One of the simple way to construct such a function is to 
include the information of local environments of amino acids into the 
pairwise contact function. After parameterizing the local 
environments of amino acids into 9 categories depending on three 
secondary structures and three kinds of hydrophobicity (solvation) 
of amino acids, the 16,290 independent parameters of pairwise 
contact (180ⅹ180) matrix were determined by the perceptron 
learning and the protein threading. These could stabilize all native 
states of 1,006 proteins with 30% homology (Heo et al., 2004). 

 
In this paper we propose a new two-body score function which 

can also stabilize all native states of 1,006 proteins simultaneously. 
This two-body score function differs from the usual pairwise contact 
functions of Miyazawa and Jernigan (1985, 1996), Vendruscolo et al. 
(1999), Dima et al. (2000), and Salvi and DeLosRios (2003) in that it 
considers two amino acids which are adjacent each other at two 
ends of each peptide bond with the backbone directionality from the 
N-terminal to the C-terminal. The score is a corresponding 
propensity for such a directional alignment of two adjacent amino 
acids with their local environments. We show that the construction 
of a directional adjacency-score function was achieved using 1,006 
training proteins with the sequence homology less than 30%, which 
include all the representatives of different protein classes. After 
parameterizing the local environments of amino acids into 9 
categories depending on three secondary structures and three 
kinds of hydrophobicity of amino acids, the 32,400 adjacency-
scores of amino acids could be determined by the perceptron 
learning and protein threading. These could stabilize all native folds 
of 1,006 training proteins simultaneously. When these parameters 
are tested on the new distinct 382 proteins with the sequence 
homology less than 90%, 371 (97.1%) proteins could recognize 
their native folds. Using these adjacency-score parameters, we 
showed also that the retro sequence of the SH3 domain, the B 
domain of Staphylococcal protein A and the B1 domain of 
Streptococcal protein G can not be stabilized to fold, which agrees 
with the experimental evidence (Lacroix et al. 1998). 
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Results and Discussion 
 
Directional adjacency-score function 

Given a sequence of amino acids, we need to have the 
directional adjacency-score function which can access the fitness of 
a sequence to the native structure or decoy structures. We employ 
the coarse-grained representation of amino acids and their local 
environmental information. One may construct the simple 
adjacency-score function in terms of the propensities of two amino 
acids being adjacent at two ends of each peptide bond along the 
directional backbone from the N-terminal to C-terminal. The basic 
strategy is to determine these propensities such that the adjacency-
score of a sequence in the native structure is always lower than in 
the competing decoy structures. This criterion should also apply to 
the set of many proteins simultaneously. The directional adjacency-
score function we propose is the following: 

,),;,(),;,(),(
, ,
∑∑=Γ

ji lk
AAA lkjilkjinsH ε      (1) 

where H is the directional adjacency-score function which is a 
measure how good a sequence s is housed into the structure Γ. The 
elements in the sum are the environment dependent two-body 
adjacency-scores for two amino acids residing at two ends of each 
peptide bond where ),;,( lkjinA  is the number of pairs of two 
adjacing amino acids of types i, j found in the local environment k, l 
respectively and ),;,( lkjiAε  is the propensity associated with 
it. Here, we considered a direction of a backbone in a protein such 
that N-terminal is a starting point and C-terminal is an ending point. 
In our convention the amino acid of type i is located at the left end 
(toward the N-terminal) and type j at the right end (towards the C-
terminal) of a peptide bond. Therefore, we take into account of the 
non-symmetric nature of the alignment of amino acids sequence. 
Once the structures of proteins are given, ),;,( lkjinA  are 
determined from PDBs. Our aim is to extract the directional 
adjacency-score parameters in the 180ⅹ180 matrix 

),;,( lkjiAε  to ensure the simultaneous stabilization of the 
native folds with respect to a set of decoy structures. Since this 
matrix is non-symmetric, the number of independent parameters is 
32,400. 
 
Local environments of amino acids and a training set of 
proteins 

We classified the local environments of amino acids in the protein 
structure into 9 categories: Each amino acid can be found in one of 
three secondary structures (α-helix, β-sheet, and other). The solvent 
exposed ratio of amino acid is calculated using Richards' algorithm 
(Lee and Richards 1971; Pattabiraman 1995) as the ratio between 
the solvent accessible area of each amino acid, X, in its native 
structure and corresponding area in Gly-X-Gly extended structure. 
The values of the solvent exposed ratios < 10%, 10-50%, and > 
50%, capturing the degree of a hydrophobicity (solvation), were 
classified into three classes of small, medium, and large exposure 
respectively. Once this environmental classification of amino acids 
is done, 3D structural information of a sequence is transformed into 
1D string of local environmental parameters. Each protein 
conformation, namely a sequence housed in a given structure, is 
now represented by a string of {(i,m)}. Therefore the directional 
adjacency-score function Eq.(1) provides a quantitative measure of 
the propensity for two amino acids being adjacent at two ends of 
each peptide bond along the directional backbone of a protein with 
their corresponding local environments. 

 
We used a training set of 1,006 proteins from the PDB select 

(http://www.cmbi.kun.nl/gv/pdbsel) and WhatIf (http://www.cmbi.kun 
.nl/whatif) (Hobohm et al. 1992; Hobohm and Sander 1994; Holm 
and Sander 1996). In fact, there are 3032 representative proteins 
with 30% sequence homology in PDB select and WhatIf, covering 
all different classes according to the Structural Classification of 

Proteins (SCOP) classification, which were selected from all the 
known structures of proteins by the all-against-all Smith/Waterman 
alignment between chains. Among these proteins we selected those 
(1) whose structure were obtained by x-ray crystallography, (2) 
which do not have the non-standard amino acids, (3) which are not 
the disconnected chains, and (4) which are not the structures of 
mutant. As a result, we have a training set of the non-redundant 
1,006 proteins, whose length ranges from 53 to 994 amino acids. 
The same criterion is used for selecting 382 test proteins with 90% 
sequence homology which are distinct from 1,006 training proteins 
and will be used for a stringent threading test of the learned score 
parameters. 

 
Perceptron learning of the directional adjacency-score 
parameters 

We first generate the decoys of each protein by the gapless 
threading of 1,006 training proteins on themselves. The sequence of 
each protein is threaded on the structure (environments) Γ of all 
proteins, with the equal or the longer length than a target protein, 
out of 1,006 proteins. The solvent accessible area of amino acids 
mounted on a threaded fragment was approximated to be the same 
as that in the longer protein from which the fragment was taken. The 
total number of decoys for 1,006 training proteins is about 78.2 
million, and each decoy has to satisfy the following inequality to 
stabilize the native structures of all 1,006 training proteins (Krauth 
and Mezard 1987; Chang et al. 2001): 
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9
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where 

D
A lkjin ),;,(  and ),;,( lkjinA  are the occurrence  

of adjacent pair (i, j; k, l) in the decoy D(=1,2,…,78.2 million) and in 
its native structure, respectively. Our aim is to determine and 
optimize 32,400 parameters of ),;,( lkjiAε  to ensure that 
1,006 training proteins with the known native structure have the 
lower scores than when their sequences are housed in the decoy 
structures. 

 
The basic ingredient to determine the optimal ),;,( lkjiAε , 

instead of solving all 78.2 million inequalities, is the following. For 
each training protein there are many decoys generated from a 
protein threading. We impose the condition that native score of a 
given protein must be lower than (1) the average score of a random 
sequence on its own native structure with the same composition of 
amino acid (Seno et al. 1996; Micheletti et al. 1998) and (2) the 
average score of a sequence on the decoy structures. The former 
generates 1,006 inequalities and 1,005 inequalities from the later. 
We first solve these 2,011 inequalities by the perceptron learning, 
whose solution guides the approximate direction of the ultimate 
solution ),;,( lkjiAε  in 32,400-dimensional parameter space. 
Using these learned ),;,( lkjiAε , we perform a threading test 
for comparing the scores of all 78.2  million decoys with their native 
state score. The number of failed decoys whose scores are lower 
than their native state score is 220 out of 78.2 million. The 
inequalities from the failed decoys are added to the previous 2,011 
inequalities for all of which the perceptron learning, taken the 
(learned) ),;,( lkjiAε  as the initial condition, is performed 
again to find the new solution for ),;,( lkjiAε . We tried to 
achieve the maximum stability of native state against the competing 
decoys by maximizing the gap between the native scores of 1,006 
training proteins and their failed decoys. Now the second threading 
test of 1,006 training proteins with the new ),;,( lkjiAε  
produces the new set of failed decoys adding to the previous set of 
inequalities. We iterated the procedure of (i) perceptron learning for 
updating score parameters, (ii) protein threading to add new 
inequalities until the number of failed decoy to add becomes zero. 
When this is achieved, the total number of inequalities to solve is  
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2,235. Although the solution ),;,( lkjiAε  from solving 2,235 
inequalities satisfies all 78.2 million inequalities, it is neither unique 
nor optimized. The optimization strategy is to push the scores of 
competing decoys as further away as possible from the native state 
score so that the maximum stabilities of the native states of 1,006 
training proteins are achieved. For this purpose we identify the 
competing decoys (among all 78.2 million decoys) whose score gap 
from their native state score is smaller than the minimum gap of 
2,235 decoys. Again we add the inequalities for these competing 
decoys to the previous 2,235 inequalities, and learn the optimized 
solution ),;,( lkjiAε . We also iterate the procedure of 
perceptron learning and protein threading until the number of 
competing decoys (among all 78.2 million decoys) whose gap is 
smaller than the minimum gap of previous inequalities becomes 
zero, which resulted in just solving 4,013 inequalities. We could 
optimize 32,400 adjacency-score parameters simultaneously which 
stabilize 100% of the native states of 1,006 training proteins. 

 
Threading test of the directional adjacency-score parameters 
and stabilization capability for the new distinct proteins 

After we succeeded in learning the directional adjacency score 
parameters, we check the stabilization capability of our parameters 
for the native folds of the new distinct proteins. The threading test of 
382 new distinct proteins on themselves using our learned score 
parameters showed that the native folds of 371 (97.1%) proteins 
could be stabilized, and there are only 107 failed decoys out of the 
total 12.1 million decoys. TABLE I lists 11 failed proteins, and the 
number of failed decoys for each of them is within the lowest 0.1% 
of the total number of decoys. In view of the fact that we chose our 
382 test proteins which are 90% homologous in order to perform a 
stringent threading test, the success ratio of more than 97% is the 
very good one. We classify the new distinct 382 test proteins into 
the α, β, α/β, α+β classes according to their SCOP classification. 
We checked whether our directional adjacency-score parameters 
could provide the success ratio of more than 90% for the different 
classes in the threading test. TABLE II shows such a success ratio 
for the proteins belonging to each class when they are subject to 
the threading test on the 382 test proteins. 
 
Can the retro sequence of a protein in its native parent 
structure be stabilized? 

A retro protein can be obtained by aligning a protein sequence 
backwards on its original native structure. The folding of the retro 
sequence of the B domain of Staphylococcal protein A was 
simulated by Kolinski and Skolnick (1994a, 1994b) and Olszewski 
et al. (1996) using a high coordination lattice model and the retro 
sequence was predicted to retain the structure close to the native 
parent structure or to a topological mirror image of it. However, 
Lacroix, Viguera, and Serrano (1998) showed the experimental 
evidence that the retro sequence of the SH3 domain (1SHG), the B 
domain of Staphylococcal protein A (1BDC), and the B1 domain of 

Staphylococcal protein G (2GB1) are unfolded proteins. As long as 
one ignores the backbone directionality in the coarse-graining 
description of a protein as a string of the isotropic beads, the protein 
score functions are insensitive to the sequence inversion and 
predict that the retro sequence fits well on the structure of its 
original native structures. 
 

Our directional adjacency-score function was designed and built 
based on the backbone directionality of a protein, it is therefore 
expected to be sensitive to the sequence inversion of a protein. We 
applied our directional adjacency-score parameters to clarify 
whether the retro protein can retain its original structure as the 
stabilized one. Assuming that the retro sequence could be housed 
and stabilized in a native structure of its original sequence, we 
performed the threading test of the retro protein on our 1,006 
training proteins in order to calculate the directional adjacency-
score and check whether the retro protein could be stabilized. Table 
III shows the results of the threading test of the retro proteins of 
1SHG, 1BDC, and 2GB1 using the directional adjacency-score 
parameters. The numbers of failed decoys for the original proteins 
with the forward sequences are 1, 0, and 0 which reflects that these 
are well stabilized in the conformational space of decoys. On the 
other hand the retro proteins with the backward sequences in a 
native structure of its original sequence are not stabilized at all with 
the large number of failed decoys whose directional adjacency-
scores are lower than the score of the retro proteins. Therefore, our 
threading test using the directional adjacency-score function 
indicates at least that the retro sequences in their original native 
structures are not the stabilized one, which contradicts with the 
prediction of Kolinski and Skolnick (1994a; 1994b) and Olszewski et 
al. (1996) but agrees with the experimental evidence of Lacroix, 
Viguerra, and Serrano (1998). 
 
 
Conclusion and Prospects 
 

We propose a new two-body score function which can stabilize all 
native states of 1,006 proteins simultaneously. This two-body score 
function differs from the usual pairwise contact function of Miyazawa 
and Jernigan (1985, 1996), Vendruscolo et al. (1999), Dima et al. 
(2000), and Salvi and DeLosRios (2003) in that it considers two 
amino acids which are adjacent each other at two ends of each 
peptide bond with the backbone directionality from the N-terminal to 
the C-terminal. The score is a corresponding propensity for such a 
directional alignment of two adjacent amino acids with their local 
environments. We show that the construction of a directional 
adjacency-score function was achieved using 1,006 training 
proteins with the sequence homology less than 30% which include 
all the representatives of different protein classes. After 
parameterizing the local environments of amino acids into 9 
categories depending on three secondary structures and three 

TABLE I. The list of 11 failed proteins out of 382 test proteins. 

PDB NAA Ntd Nfd PDB NAA Ntd Nfd 

1IG7 58 78,676 5 1HRO 105 61,461 26 

1FYN 62 77,160 21 1CO6 107 60,764 1 

1PGX 70 74,154 1 1HE7 107 60,764 22 

1MHO 88 67,522 6 1G96 111 59,402 15 

1BWO 90 66,795 7 1RAV 124 55,174 1 

1HPO 99 63,567 2     

The number of failed decoys (Nfd) is within the lowest 0.1% of the total number of decoys (Ntd) for each protein showing that the native folds are 
almost stabilized even for the failed proteins. NAA is the length of each protein. 
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kinds of hydrophobicity of amino acids, the 32,400 adjacency-score 
parameters of amino acids could be determined by the perceptron 
learning and protein threading. These could stabilize all the native 
folds of 1,006 training proteins simultaneously. When these 
parameters are tested on the new distinct 382 proteins with the 
sequence homology less than 90%, 371 (97.1%) proteins could 
recognize their native folds. Using these adjacency-score 
parameters, we showed that the retro sequence of the SH3 domain, 
the B domain of Staphylococcal protein A and the B1 domain of 
Streptococcal protein G can not be stabilized to fold, which agrees 
with the experimental evidence. 
 
 
Materials and Methods  
 
Perceptron learning 

The general strategy to find the solution 
)},;,({ lkjiAA εε ≡  is to find the values of ),;,( lkjiAε  

which satisfies Eq.(3) simultaneously for D=1,2,…,78.2 million in the 
32,400-dimensional space of parameters;  

0),;,()],;,(),;,([
20

1,

9

1,

>⋅=−∑∑
= =

A
D
A

ji lk
AA

D
A nlkjilkjinlkjin εε

rr   (3) 

Here, )],;,(),;,([ lkjinlkjinn A
D

A
D
A −=
r

 is fixed once a 
set of 1,006 training protein is known, and Aε

r
 is the unknown 

vector to be determined. We start from an initial value of 
),;,(0 lkjiAε

r
 and calculate the scalar product 

D
Anr  on Aε

r
  

for all 78.2 million inequalities. The vectors 
D
Anr  whose 

A
D
An ε

rr
⋅ are negative are the ones which do not satisfy the above 

inequality and the corresponding decoys are called as the failed  
decoys. We select the worst vector 

w
Anr  among the failed decoys, 

w h i c h  h a s  t h e  l o w e s t  v a l u e  o f  g a p ,  a n d  u p d a t e 
)10()()1( <<⋅+=+ ααεε w

AAA ntt rrr
so that the gap for 

the worst decoy w increases. The 78.2 million scalar products are 
calculated again with the new )1( +tAε

r
, and the set of failed 

decoys and the worst decoy is identified to update )1( +tAε
r

 
again. This procedure is iterated until the number of failed decoys 
out of 78.2 million decoys becomes zero. The main idea of this 
update is to find Aε

r
 which can stabilize the score of the native 

states against the scores of the decoy structures so that the native 
state can be fully stabilized. If a solution of Eq.(3) exists, namely 
 

final
Aε
r

satisfies all 78.2 million inequalities, the vector 
final

Aε
r

 
converges to a region of points in the 32,400-dimensional space 
and the gap of the worst decoy 

final
A

w
An ε
rr
⋅ becomes a positive 

finite within a finite number of iterations. If the iteration runs forever 
not to give a converging value of Aε

r
 nor a positive finite value for 

the gap, the perceptron learning is not learnable which means that 
either there is no solution or the parameterization in the energy 

function (Eq.(1)) is not adequate. 
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