DOI QR코드

DOI QR Code

A Study on Failure Strength of the Hybrid Composite Joint

복합재 하이브리드 조인트의 파손강도에 관한 연구

  • 이영환 (한양대학교 기계공학부 대학원) ;
  • 박재현 (경상대학교 기계항공공학부, 항공기부품기술연구소) ;
  • 안정희 (경상대학교 기계항공공학부, 항공기부품기술연구소) ;
  • 최진호 (경상대학교 기계항공공학부, 항공기부품기술연구소) ;
  • 권진회 (경상대학교 기계항공공학부, 항공기부품기술연구소)
  • Published : 2009.04.30

Abstract

With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure strengths of the hybrid composite joints which were composed of a combination of an adhesive joint and a mechanical joint were evaluated and predicted. The 10 hybrid joint specimens which have different w/d, e/d and adherend thickness were manufactured and tested. The damage zone theory and the failure area index method were used for the failure prediction of the adhesive joint and the mechanical joint, respectively and the hybrid joints were assumed to be failures if either of the two failure criteria was satisfied. From the results of experiments and analyses, the failure strengths of the hybrid joints could be predicted to within 25.5%.

복합재료가 항공기 구조물 및 기계 부품 등에 폭 넓게 적용됨에 따라, 복합재료 구조들에서 가장 취약한 복합재료 체결부의 설계는 매우 중요한 연구분야로 대두되긴 있다. 본 논문에서는 접착 체결구조와 기계적 체결구조의 조합으로 되어 있는 하이브리드 조인트의 파손강도를 평가하고 예측하였다. 피착제의 두께, w/d, e/d가 서로 다른 10가지 하이브리드 조인트 시험편을 제작하여 평가하였다. 접착 체결구조와 기계적 체결구조의 파손 판정을 위해 파손영역법과 파괴면적지수법이 각각 적용 되었으며, 두 체결부위 중 어느 한족이 먼저 파손기준에 도달할 경우, 하이브리드 조인트가 파손되었다고 가정하였다. 이상의 실험과 해석결과로부터, 하이브리드 조인트 시편의 파손강도는 25.5%, 오차 범위 내에서 예측할 수 있었다.

Keywords

References

  1. Reinhart J.J. (Eds), ASM International, Composite, Vol. 1, 1987, pp. 479-495
  2. Lee D.G., Jeong K.S., Kim K.S. and Kwak Y.K., "Development of Anthropomorphic Robot with Carbon Fiber Epoxy Composite materials," Composite Structures, Vol. 25, 1993, pp. 313-324 https://doi.org/10.1016/0263-8223(93)90178-S
  3. James F.P. Owens and Pearl Lec-Sullivan, "Stiffness behaviour due to fracture in adhesiveIy bonded composite-to-aluminum joints I. Theoretical model," International Journal of Adhesion and Adhesives, Vol. 20, 2000, pp. 39-45 https://doi.org/10.1016/S0143-7496(99)00013-5
  4. James F.P. Owens and Pearl Lee-Sullivan, "Stiffness behaviour due to fracture in adhesively bonded composite-to-aluminum joints II. Experimental," International Journal of Adhesion and Adhesives, Vol. 20, 2000, pp. 47-58 https://doi.org/10.1016/S0143-7496(99)00014-7
  5. Choi J.H. and Lee D.G., "The Torque Transmission Capabilities of the Adhesively-Bonded Tubular Single Lap Joint and the Double lap Joint," The Journal of Adhesion, Vol. 44, 1994, pp. 197-212 https://doi.org/10.1080/00218469408027077
  6. Hart-Smith L.J., Designing to minimize peel stresses in adhesive bonded joints, Delamination and Debonding of Materials, Johnson W.S. Ed., ASTM STP 876, 1985, pp.238-266
  7. Groth H.L. "A method to predict fracture in an adhesively bonded joint," International Journal of Adhesion and Adhesives, Vol. 5, 1985, pp. 19-22 https://doi.org/10.1016/0143-7496(85)90041-7
  8. Sheppard A., Kelly D. and Tong L., "A damage zone model for the failure analysis of adhesively bonded jomts," International Journal of Adhesion and Adhesives Vol. 18, 1998, pp. 385-400 https://doi.org/10.1016/S0143-7496(98)00024-4
  9. Ban C.S., Lee Y.H., Choi J. H. and Kweon J.H., "Strength prediction of adhesive joints using the modified damage zone theory," Composite structures, Vol. 86, 2008, pp. 96-100 https://doi.org/10.1016/j.compstruct.2008.03.016
  10. Hart-Smith L.J., "Mechanically Fastened Joints for Advanced Composites, Phenomenological Considerations and Simple Analyses," Fibrous Composite in Structural Design, Plenium Press, 1980, pp. 543-574
  11. Whitney J.M. and Nuismer R.J., "Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations," Journal of Composite Materials, Vol. 8, 1974, pp. 253-265 https://doi.org/10.1177/002199837400800303
  12. Whitney J.M. and Nuismer R.J., "Uniaxial Failure of Composite Laminated Containing Stress Concentrations Fracture mechanics of Composite", ASTM STP 593, 1975, pp. 117-142
  13. Chang F. K. and Scott R.A., "Strength of Mechanically Fastened Composite Joints," JournaI of Composite materials, Vol. 16, 1982, pp. 470-494 https://doi.org/10.1177/002199838201600603
  14. Chang F.K. and Scott R.A., "Failure of Composite Laminates Containing Pin Loaded Holes-Method of Solution," Journal of Composite materials, Vol. 18, 1984, pp. 255-278 https://doi.org/10.1177/002199838401800305
  15. Sun H.T., Chang F.K. and Qing X., "The response of Composite Joints with Bolt-Clamping Loads, Part Model Development," Journal of Composite materials, Vol. 36. 2002, pp. 47-67 https://doi.org/10.1177/0021998302036001301
  16. Sun H.T., Chang F.K. and Qing X., "The response of Composite Joints with Bolt-Clamping Loads, Part II : Model Verification," Journal of Composite materials, Vol. 36, 2002, pp. 69-92 https://doi.org/10.1177/0021998302036001302
  17. 최진호, 전영준, 권진회, "기계적으로 체결된 복합재료 조인트의 강도에 관한 연구," 한국복합재료학회논문집, 제15권, 제4호, 2002 pp. 9-16
  18. 전영준, 최진호, 권진회, "파괴면적지수법을 이용한 복합재료 기계적 체결부의 강도평가에 관한 연구," 한국복합재료학회논문집, 제16권, 제5호, 2003, pp. 1-6
  19. Choi J.H. and Chun Y, J., "Failure Load Prediction of Mechanically Fastened Composite Joint," Journal of Composite Materials, Vol. 37, No. 24, 2003, pp. 2163-2177 https://doi.org/10.1177/002199803038108
  20. Ryu C.O., Choi J. H. and Kweon J. H., "Failure load prediction of composite joints using linear analysis," Journal of Composite Materials, Vol. 41, No. 7, 2007, pp. 865-878 https://doi.org/10.1177/0021998306067068