DOI QR코드

DOI QR Code

Conductivity Imaging of a Canine Head using a 3T MREIT System with a Carbon-Hydrogel Electrode: Postmortem Experiment

3T MREIT 시스템을 이용한 실험견 사체의 두부 도전율 영상

  • Jeong, Woo-Chul (College of Electronics and Information, Kyung Hee University) ;
  • Kim, Young-Tae (College of Electronics and Information, Kyung Hee University) ;
  • Minhas, Atul S. (College of Electronics and Information, Kyung Hee University) ;
  • Kim, Hyung-Joong (College of Electronics and Information, Kyung Hee University) ;
  • Lee, Tae-Hwi (College of Electronics and Information, Kyung Hee University) ;
  • Kang, Byeong-Teck (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University) ;
  • Park, Hee-Myung (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University) ;
  • Woo, Eung-Je (College of Electronics and Information, Kyung Hee University)
  • 정우철 (경희대학교 전자정보대학 동서의료공학과) ;
  • 김영태 (경희대학교 전자정보대학 동서의료공학과) ;
  • ;
  • 김형중 (경희대학교 전자정보대학 동서의료공학과) ;
  • 이태휘 (경희대학교 전자정보대학 동서의료공학과) ;
  • 강병택 (건국대학교 수의과대학 수의내과학교실) ;
  • 박희명 (건국대학교 수의과대학 수의내과학교실) ;
  • 우응제 (경희대학교 전자정보대학 동서의료공학과)
  • Published : 2009.04.30

Abstract

Magnetic Resonance Electrical Impedance Tomography (MREIT) is a new bio-imaging modality providing cross-sectional conductivity images from measurements of internal magnetic flux densities produced by externally injected currents. Recent MREIT studies demonstrated successful conductivity image reconstructions of postmortem and in vivo canine brain. However, the whole head imaging was not achieved due to technical issues related with electrodes and noise in measured magnetic flux density data. In this study, we used a new carbon-hydrogel electrode with a large contact area and injected 30 mA imaging current through a canine head. Using a 3T MREIT system, we performed a postmortem canine experiment and produced high-resolution conductivity images of the entire canine head. Collecting magnetic flux density data inside the head subject to multiple injection currents, we reconstructed cross-sectional conductivity images using the harmonic $B_z$ algorithm. The conductivity images of the canine head show a good contrast not only inside the brain region including white and gray matter but also outside the brain region including the skull, temporalis muscle, mandible, lingualis proprius muscle, and masseter muscle.

Keywords

References

  1. L.A. Geddes, and L.E. Baker, 'The specific resistance of biological material: a compendium of data for the biomedical engineer and physiologist', Med. Biol. Eng.,vol. 5, pp. 271-93, 1967 https://doi.org/10.1007/BF02474537
  2. C. Gabriel, S. Gabriel, and E. Corthout, 'The dielectric properties of biological tissues: I. Literature survey', Phys. Med. Biol., vol. 41, pp. 2231-49, 1996 https://doi.org/10.1088/0031-9155/41/11/001
  3. S. Gabriel, R.W. Lau, and C. Gabriel, 'The dielectric properties of biological tissues: II. Measurements in the frequency range 10Hz to 20GHz', Phys. Med. Biol., vol. 44, pp. 2251-69, 1996
  4. S. Grimnes, and O.G. Martinsen, Bioimpedance and bioelectricity Basics, London, UK: Academic Press, 2000, pp. 93-124
  5. N. Zhang, 'Electrical Impedance Tomography based on Current Density Imaging', Toronto, Canada: MS Thesis, Dept. of Elec. Eng, 1992
  6. E.J. Woo, S.Y. Lee, and C.W. Mun, 'Impedance tomography using internal current density distribution measured by nuclear magnetic resonance', SPIE, vol. 2299, pp. 377-385, 1994 https://doi.org/10.1117/12.179269
  7. Y.Z. Ider, and O. Birgul, 'Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography (MR-EIT)', Elektrik, vol. 6, pp. 215-225, 1998
  8. J.K. Seo, J.R. Yoon, E.J. Woo, and O. Kwon, 'Reconstruction of conductivity and current density images using only one component of magnetic field measurements', IEEE Trans. Biomed. Eng., vol. 50, pp. 1121-1124, 2003 https://doi.org/10.1109/TBME.2003.816080
  9. S.H. Oh, B.I. Lee, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, and J.K. Seo, 'Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography', Phys. Med. Biol., vol. 48, pp. 3101-3116, 2003 https://doi.org/10.1088/0031-9155/48/19/001
  10. T.I. Oh, Y. Cho, Y.K. Hwang, S.H. Oh, E.J. Woo, and S.Y. Lee, 'Improved current source design to measure induced magnetic flux density distributions in MREIT', J. Biomed. Eng. Res., vol. 27, pp. 30-37, 2006
  11. S.H. Oh, B.I. Lee, T.S. Park, S.Y. Lee, E.J. Woo, M.H. Cho, O. Kwon, and J.K. Seo, 'Magnetic resonance electrical impedance tomography at 3 Tesla field strength', Mag. Reson. Med., vol. 51, pp. 1292-1296, 2004 https://doi.org/10.1002/mrm.20091
  12. S.H. Oh, B.I. Lee, E.J. Woo, S.Y. Lee, T.S. Kim, O. Kwon, and J.K. Seo, 'Electrical conductivity images of biological tissue phantoms in MREIT', Physiol. Meas., vol. 26, S279-288, 2005 https://doi.org/10.1088/0967-3334/26/2/026
  13. H.J. Kim, B.I. Lee, Y. Cho, Y.T. Kim, B.T. Kang, H.M. Park, S.Y. Lee, J.K. Seo, and E.J. Woo, 'Conductivity imaging of canine brain using a 3 T MREIT system: postmortem experiments', Physiol. Meas., vol. 28, pp. 1341-1353, 2007 https://doi.org/10.1088/0967-3334/28/11/002
  14. H.J. Kim, T.I. Oh, Y.T. Kim, B.I. Lee, E.J. Woo, J.K. Seo, S.Y. Lee, O. Kwon, C. Park, B.T. Kang, and H.M. Park, 'In vivo electrical conductivity imaging of a canine brain using a 3T MREIT system', Physiol. Meas., vol. 29, pp. 1145-1155, 2008 https://doi.org/10.1088/0967-3334/29/10/001
  15. A.S. Minhas, W.C. Jeong, Y.T. Kim, H.J. Kim, T.H. Lee, and E.J. Woo, 'MREIT of Postmortem Swine Legs using Carbon-hydrogel Electrodes', J. Biomed. Eng. Res., vol. 29, pp.436-442, 2008
  16. C. Park, B.I. Lee, O. Kwon, and E.J. Woo, 'Measurement of induced magnetic flux density using injection current nonlinear encoding (ICNE) in MREIT', Physiol. Meas., vol. 28, pp. 117-127, 2006 https://doi.org/10.1088/0967-3334/28/2/001
  17. R. Sadleir, S. Grant, S.U. Zhang, B.I. Lee, H.C. Pyo, S.H. Oh, C. Park, E.J. Woo, S.Y. Lee, O. Kwon, and J.K. Seo, 'Noise analysis in MREIT at 3 and 11 Tesla field strength', Physiol. Meas., vol. 26, pp. 875-84, 2005 https://doi.org/10.1088/0967-3334/26/5/023