Single Carbon Fiber/Acid-Treated CNT-Epoxy Composites by Electro-Micromechanical Technique and Wettability Test for Dispersion and Self-Sensing

젖음성 시험과 전기-미세역학 시험법과 통한 단 카본섬유/산처리된 CNT-에폭시 나노복합재료의 분산과 자체-감지능

  • Jang, Jung-Hoon (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Wang, Zuo-Jia (School of Materials Science and Engineering, Gyeongsang National University) ;
  • GnidaKouong, Joel (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Gu, Ga-Young (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Park, Joung-Man (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Lee, Woo-Il (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Park, Jong-Kyoo (Agency for Defense Development, 4-R&D Center)
  • 장정훈 (경상대학교 나노.신소재공학부/고분자공학전공) ;
  • 왕작가 (경상대학교 나노.신소재공학부/고분자공학전공) ;
  • 공조엘 (경상대학교 나노.신소재공학부/고분자공학전공) ;
  • 구가영 (경상대학교 나노.신소재공학부/고분자공학전공) ;
  • 박종만 (경상대학교 나노.신소재공학부/고분자공학전공) ;
  • 이우일 (서울대학교 기계.항공공학부) ;
  • 박종규 (국방과학연구소, 제4연구개발본부)
  • Received : 2009.05.21
  • Accepted : 2009.06.26
  • Published : 2009.06.30

Abstract

Dispersion and self-sensing evaluation for single-carbon fiber reinforced in three different acid-treated CNT-epoxy nanocomposites were investigated by electro-micromechanical techniques and wettability tests. Self-sensing based on contact resistivity exhibited more noise for single carbon fiber/acid-treated CNT-epoxy composites than it did for untreated CNT. However, the apparent modulus was higher the acid treated case than the untreated case which is attributed to better stress transfer. The interfacial shear strength (IFSS) between carbon fibers and the CNT-epoxy was lower than that between carbon fiber and neat epoxy due to the increased viscosity associated with the addition of the CNT. The CNT-epoxy nanocomposite exhibited more hydrophobicity than did neat epoxy. Change in the thermodynamic work of adhesion was consistent with changes in the IFSS but disproportional to that of the apparent modulus. The optimum condition of acid treatment on the need can be obtained instead of the maximum condition.

세 가지의 다른 산처리를 한 단일 탄소섬유로 함침된 CNT-에폭시 나노복합재료는 전기-미세역학적 기술과 젖음성 시험법을 사용하여 분산과 자체-감지능을 조사하였다. 자체-감지능은 접촉저항의 노이즈가 산 처리되지 않은 CNT보다, 산 처리된 단일 탄소섬유 CNT-에폭시 나노복합재료가 다소 더 크게 나타났다. 반면에, 겉보기 강성도는 산 처리를 한 경우가 응력전달이 더 잘되어, 산처리 하지 않은 경우보다 더 컸다. 탄소섬유와 CNT-에폭시간의 계면전단강도는 CNT 첨가로 인하여 점도가 증가하기 때문에 탄소섬유와 순수 에폭시간의 경우보다 낮게 나타났다. CNT-에폭시 나노복합재료는 순수 에폭시보다 더 큰 소수성을 보여 주었다. 열역학적인 접착일은 계면전단강도와 대략 비례적인 관계를 보여주지만, 겉보기 강성도는 접착일과는 반비례를 나타내었다. 요구되는 물성에 따라서, 최대조건 대신에 최적의 산처리 조건이 필요로 할 것이다.

Keywords

References

  1. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett., 76, 2868 (2000). https://doi.org/10.1063/1.126500
  2. J. Sandlera, M. S. P. Shaffera, T. Prasseb, W. Bauhoferb, K. Schultea, and A. H. Windle, Polymer, 40, 5967 (1999). https://doi.org/10.1016/S0032-3861(99)00166-4
  3. C. L. Xu, B. Q. Wei, R. Z. Ma, J. Liang, X. K. Ma, and D. H. Wu, Carbon, 37, 855 (1999). https://doi.org/10.1016/S0008-6223(98)00285-1
  4. S. C. Chowdhury and T. Okabe, Comp. Part. A, 38, 747 (2007). https://doi.org/10.1016/j.compositesa.2006.09.011
  5. D. D. L. Chung, Carbon, 39, 1119 (2001). https://doi.org/10.1016/S0008-6223(00)00314-6
  6. J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon, H. Hu, R. W. Cohn, P. C. Eklund, D. T. Colbert, R. E. Smalley, and R. C. Haddon, J. Phys. Chem. B, 105, 2525 (2001). https://doi.org/10.1021/jp002596i
  7. Z. Wei, C. Song, and P. E. Pehrsson, J. Am. Chem. Soc., 124, 18 (2002). https://doi.org/10.1021/ja0120633
  8. J. Zhu, J. D. Kim, H. Peng, and J. L. Margrave, Nano. Lett., 3, 1107 (2003). https://doi.org/10.1021/nl0342489
  9. G. Zhang, S. Sun, D. Yang, J. P. Dodelet, and E. Sacher, Carbon, 46, 196 (2008). https://doi.org/10.1016/j.carbon.2007.11.002
  10. M. A. Hamom, H. Hui, P. Bhowmik, S. Nitogi, B. Zhao, H. M. E. Itkis, and R. O. Haddon, Chem. Phys. Lett., 347, 8 (2001). https://doi.org/10.1016/S0009-2614(01)01035-1
  11. H. Nishikiori, N. Tanaka, T. Tanigaki, M. Endo, and T. Fujii, J. Photochem. Photobiol. A, 193, 161 (2008). https://doi.org/10.1016/j.jphotochem.2007.06.021
  12. P. M. Ajayan, L. S. Schadler, S. C. Giannaris, and A. Rubio, Adv. Mater., 12, 750-753 (2000). https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
  13. J. M. Park, D. S. Kim, S. J. Kim, P. G. Kim, D. J. Yoon, and K. L. DeVries, Comp. Part B, 38, 847 (2007). https://doi.org/10.1016/j.compositesb.2006.12.004
  14. J. M. Park, S. I. Lee, and K. L. DeVries, Comp. Part B, 13, 612 (2006).
  15. J. M. Park, D. S. Kim, and S. R. Kim, Compos. Sci. Technol., 64, 847 (2004). https://doi.org/10.1016/j.compscitech.2003.09.009