폴리프로필렌-천연섬유 복합재료의 혼합시 유변학적 및 열적 특성: II. 상용화제의 영향

Rheological Properties During Mixing and Thermal Properties of Polypropylene/Natural Fiber Composites: II. Effects of A Compatibilizer

  • Kim, Sam-Jung (Department of Polymer Science and Engineering, Pusan National University) ;
  • Yoo, Chong Sun (Korea Institute of Footwear and Leather Technology) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
  • 투고 : 2009.02.25
  • 심사 : 2009.03.20
  • 발행 : 2009.03.30

초록

두 종류의 천연섬유, 즉 면섬유와 목분을 이용하여 제조한 폴리프로필렌 - 천연섬유 복합재료의 혼합가공시 유변학적 특성과 열적특성에 미치는 상용화제의 영향을 고찰하였다. 상용화제로는 무수말레인산이 그래프팅된 폴리프로필렌 공중합체를 사용하였다. 천연섬유의 종류에 관계없이 상용화제를 첨가할 때, 전반적으로 상용화제의 함량이 증가함에 따라 토오크 값이 상승함이 확인되었다. 또한, 시차 주사 열량계(DSC)와 X선 회절분석(XRD)을 통해 상용화제의 첨가시 복합재료의 결정화도가 약간 상승함이 확인되었다. 섬유의 종류에 따른 영향은 거의 관찰되지 않았으나, 혼합시 유변학적 물성, DSC 및 XRD 결과에 의하면, 면섬유의 경우가 목분보다는 PP-g-MAH와 더 나은 상호작용을 보이는 것으로 생각된다.

We investigated effects of a compatibilizer on the rheological properties during mixing and thermal properties of polypropylene (PP)-natural fiber composites. Two types of natural fibers (cotton fiber and wood fiber) were compared. maleic anhydride grafted PP was used for a compatibilizer. On increasing the amounts of the compatibilizer, the torque values of composites were increased, regardless of the kind of fibers. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results showed a slight increase in the degree of crystallinity with adding the compaibilizing agent, while the effects of the kind of fibers were marginal. It may be considered, however, the cotton fiber exhibits better interaction with PP-g-MAH than the natural fiber based on the rheographs, DSC, and XRD results.

키워드

참고문헌

  1. A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999). https://doi.org/10.1016/S0079-6700(98)00018-5
  2. A. K. Mohanty, M. Misra, and G. Hinrichsen, Macromol. Mater. Eng., 276-277, 1 (2000). https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  3. A. K. Mohanty, D. Hokens, M. Misra, and L. T. Drzal, Proc. Am. Soc. Comp. 16th Tech. Conf., Blacksbug, VA, USA, Sept. 9-12 (2001).
  4. D. Cho, S. G. Lee, W. H. Park, and S. O. Han, Polym. Sci. and Technol., 13, 460 (2002).
  5. S. J. Kim, J. B. Moon, G. H. Kim, and C. S. Ha, Polym. Testing, 27, 801 (2008). https://doi.org/10.1016/j.polymertesting.2008.06.002
  6. Y. G. Hong, Polym. Sci. and Technol., 7, 71 (1996).
  7. T. T. L. Doan, S. L. Gao, and E. Mader, Comp. Sci. Technol., 66, 952 (2006). https://doi.org/10.1016/j.compscitech.2005.08.009
  8. S. J. Kim, J. S. Yoo, G. H. Kim, and C. S. Ha, J. Adhes. Interf., 9(4), 24 (2008).
  9. H. L. Boa and van den Oever, Composites, Part A, 3, 1032 (2005).
  10. B. Lu and T. C. Chung, Macromolecules, 32, 2525 (1999). https://doi.org/10.1021/ma990019q
  11. Y. Kim, C. S. Ha, T. K. Kang, and D W. J. Cho, J. Appl. Polym. Sci., 51(8), 1453 (1994). https://doi.org/10.1002/app.1994.070510813
  12. P. Bataille, L. Ricard, and S. Sapieha, Polym. Compos., 10, 103 (1989). https://doi.org/10.1002/pc.750100207
  13. M. M. Sain, B. V. Kokta, and D. Maldas, J. Adhesion Sci. Technol., 7(1), 49(1933). https://doi.org/10.1163/156856193X00196
  14. E. Kiran and J. K. Gillham, J. Appl. Polym. Sci., 20, 2045 (1976). https://doi.org/10.1002/app.1976.070200803
  15. C. S. Ha and S. C. Kim, J. Appl. Polym. Sci., 35, 2211 (1988). https://doi.org/10.1002/app.1988.070350821
  16. K. L. Pickering and G. W. Beckermann, Polym. Comp., 11, 123 (2006).
  17. S. Cimmino, R. Greco, and E. Martuscelli, Polym. Eng. Sci., 24, 48 (1984). https://doi.org/10.1002/pen.760240106
  18. D. Cho, S. G. Lee, Y. H. Park, and S. O. Han, Fiber Technol. and Ind., 8(4), 378 (2004).
  19. C. Teslios, D. Bikiaris, V. Maslis, and C. Danayiotou, Polymer, 39, 6807 (1998). https://doi.org/10.1016/S0032-3861(98)00132-3
  20. S. J. Kim, M.S. Thesis, Pusan National University, Busan, Korea (2007).