Comparison of Interfacial Aspects of Carbon and Glass Fibers/Epoxy Composites by Microdroplet Tests at Low and Room Temperatures

상온 및 저온에서의 탄소와 유리섬유/에폭시 복합재료의 계면특성 비교

  • Wang, Zuo-Jia (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • GnidaKouong, Joel (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Myung-Soo (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Park, Joung-Man (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Um, Moon-Kwang (Korea Institute of Materials Science, Composite Materials Group)
  • 왕작가 (경상대학교 나노.신소재공학부, 공학연구원) ;
  • 공조엘 (경상대학교 나노.신소재공학부, 공학연구원) ;
  • 김명수 (경상대학교 나노.신소재공학부, 공학연구원) ;
  • 박종만 (경상대학교 나노.신소재공학부, 공학연구원) ;
  • 엄문광 (한국재료연구소 복합재료그룹)
  • Received : 2009.11.01
  • Accepted : 2009.11.11
  • Published : 2009.12.30

Abstract

As a preliminary study of optimum composite properties under cryogenic temperature, the comparison of interfacial properties of carbon or glass fibers reinforced epoxy composites was evaluated at ambient and intermediate low temperature, i.e., 25 and $-10^{\circ}C$ by using micromechanical techniques. Under tensile and compressive loading conditions, their mechanical modulus at low temperature was higher than that atambient temperature. Interfacial shear strength (IFSS) at ambient and low temperatures was compared to each other, depending on epoxy matrix toughness and apparent modulus at the interface. The IFSS was much higher at low temperature than that at room temperature because of the increased epoxy matrix modulus. Statistical distributions of tensile strengths of glass and carbon fibers were evaluated for different temperature ranges, which is dependent upon fiber's inherent flaws and rigidity.

극저온 온도에서 최적복합재료물성치의 사전 연구로서, 실온과 저온, 즉 $25^{\circ}C$$-10^{\circ}C$에서 카본 혹은 유리섬유가 함침된 에폭시 복합재료의 계면 물성치가 미세역학인 시험법을 사용하여 평가되었다. 인장과 압축하중 조건에서 저온에서의 기계적인 강성도가 상온에서의 강성도보다 증대하였다. 실온과 저온에서의 계면전단강도가 에폭시 기지의 인성과 겉보기 강성도를 사용하여 상호 비교하였다. 기지의 강성도 향상으로 인해 계면전단강도가 실온보다 저온에서 높게 나타났다. 유리와 카본 섬유의 인장 강도들의 통계적인 분포가 다른 온도의 범위 평가되었고, 이것들은 섬유의 고유결함과 견고함에 의해서 결정된다.

Keywords

References

  1. K. Sanada and Y. Shindo, J. Reinf. Plast. Comp., 26(14), 1429 (2007). https://doi.org/10.1177/0731684407079775
  2. M. Sumikawa, Y. Shindo, T. Takeda, F. Narita, S. Takano, and K. Sanada, J. Comp. Mater., 39(22), 2053 (2005). https://doi.org/10.1177/0021998305052029
  3. Y. Shindo, F. Narita, and T. Sato, Acta. Mech., 187, 231 (2006). https://doi.org/10.1007/s00707-006-0357-0
  4. T. Takeda, Y. Shindo, F. Narita, and K. Sanada, Mech. Adv. Mater. Struct., 11, 109 (2004). https://doi.org/10.1080/15376490490277312
  5. S. G. Kalarikkal, B. V. Sankar, and P. G. Ifju, J. Eng. Mater. Tech., 128, 151 (2006). https://doi.org/10.1115/1.2172274
  6. V. T. Bechel, J. D. Camping, and R. Y. Kim, Compos. Part B, 36, 171 (2005). https://doi.org/10.1016/j.compositesb.2004.03.001
  7. C. J. Huang, S. Y. Fu, Y. H. Zhang, B. Lauke, L. F. Li, and L. Ye, Cryogenics, 45, 450 (2005). https://doi.org/10.1016/j.cryogenics.2005.03.003
  8. E. D. Turn, Physica C: Superconductivity, 354, 136 (2001). https://doi.org/10.1016/S0921-4534(01)00135-6
  9. Q. Chen, B. Gao, and J. Chen, J. Appl. Polym. Sci., 89(5), 1385 (2003). https://doi.org/10.1002/app.12431
  10. M. Hara and H. Okubo, Cryogenics, 38(11), 1083 (1998). https://doi.org/10.1016/S0011-2275(98)00095-2
  11. S. Usami, H. Ejima, T. Suzuki, and K. Asano, Cryogenics, 39(9), 729 (1999). https://doi.org/10.1016/S0011-2275(99)00084-3
  12. S. Nishijima, S. Ueno, T. Okada, and K. Niwa, Cryogenics, 35(11), 681 (1995). https://doi.org/10.1016/0011-2275(95)90888-M
  13. M. Hussain, A. Nakahira, S. Nichijima, and K. Niihara, omposites Part A, 31, 173 (2000).
  14. J. F. Timmerman, M. S. Tillman, B. S. Hayes, and J. C. seferis, Composites part A, 33, 323 (2002). https://doi.org/10.1016/S1359-835X(01)00126-9
  15. F. Nakao, Y. Takenaka, and H. Asai, Composites, 23(5), 365 (1992). https://doi.org/10.1016/0010-4361(92)90336-S
  16. J. M. Park, D. S. Kim, S. J. Kim, P. G. Kim, D. J. Yoon, and K. L. DeVries, Compos. Part B, 38, 847 (2007). https://doi.org/10.1016/j.compositesb.2006.12.004
  17. J. M. Park, P. G. Kim, J. H. Jang, Z. J. Wang, J. W. Kim, W. I. Lee, J. G. Park, and K. L. DeVries, Compos. Part, 39, 1170 (2008). https://doi.org/10.1016/j.compositesb.2008.03.004
  18. J. H. Jang, Z. J. Wang, Joel GnidaKouong, G. Y. Gu, J. M. Park, W. I. Lee, and J. K. Park, J. Adhesion and Interface, 10(2), 90 (2009).
  19. T. H. Jung, R. V. Subramanian, and V. S. Manoranjan, J. Mater. Sci., 28, 4489 (1993). https://doi.org/10.1007/BF01154961