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(New and Efficient Arithmatic Logic Unit Design For Calculating Error
Values of Reed-Solomon Decoder )
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Abstract

In This Paper, New Efficient Arithmatic Logic Unit Design for Calculating Error Values of Reed Solomon Decoder is
described. Error Values are solved by solving Linear system of Equations ,So called Newtonian set of identity equations.
Here We Need Galois Multiplier, Adder, Divider on GF(28) field. We prove how the Hardware circuits are improved better
than the classical circuits. The method to find error location is not covered here, since many other researchers have
already deeply studied it.

Keywords : Reed-Solomon, Decoder, GF (28), Error Locator, Arithmatic Logic Unit, Multiplier, Divider,

Exor, Linear Systems of Equation

I. Introduction

Reed Solomon coding theory is very Famous well
known Nonbinary Error Correction Method For
Electronic Devices (Consumer and Communic ation
Products)™ .

In this paper, new RS(Reed Solomon) Decoder,
which finds out Error Values when its location is
already found by using Chien search or any other
methods. Normally Error Locations are found by

"AHY FEYSn JREANFE
(Tong Myung University Department of
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solving non Linear Systems of Equations. I and
Many other Researchers studied to solve the
Nonlinear Equations to get the Error Locations.

In this Paper we focus on how to get Error Valus
when its location is already found by using any
methods.

In chapter I Introduction is written to introduce the
whole paper. In chapter I, We briefly described how
the Newtonian identities are formed to get the Error
Values when their locations are already known.
These equations are linear system of Equations. In
Chapter III, we propose New and Efficient
Arithmatic Logic Unit Circuit which generates Error
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values Very quickly and Economically and explain
About the circuit. In chapter IV, we show more detail
explanation of Divider circuit for ALU(Aritnmatic
Logic Unit) using Subfield theory.

In chapter V future works which will be taken by
us, and Comparisons Between Old design and New
design are described®.

II. Error Value Generation when its Location
is Known

The RS(Reed Solomon) codes are based on finite
fields, often called Galois fields.

In CDP, RSC(32,28), on GF(2") field, code is used
and upto 2 symbol errors can be corrected”.

An RS code with 8bit symbols will use a Galois
field GF(2®), consisting of 256 symbols. In decoding
Reed-Solomon code, we should calculate the Syndro-
mes as in equation 1.

Let

n—1
C(X)= Y CXI
j=0
Be the Transmitted polynomial, and Let

n—1
Yo, X

j=0

R(X)=

Be the Received polynomial. Then Error pattern of
the channel is

n—1
EX)= Y E, X
=0
Where E; (=0 to n-1) are Error values. Here

Syndromes are defined as

Si=E(a?) (=0,1,--, 2t-1) )

for t Error Correcting Code. Here Syndrome Calculator
is described in the Book™.
Now if there are t errors, whose values are E,

(n=0,1,2 -+, t-1) and positions are

aj”:f)j (J:OyLZ ’t_l)

Then Error Locator Polynomial is defined as

(392)
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§(X)=(X-LBo)(X-B1) - (X=-F-1)

t
= Z X668t — & 2
k=0

Now Newton's Identities are following set of
equations.

¢
Estfjﬂ-vsj: Sy

j=1

where v=0,1,2 -, t-1 3

From Equations (2) & (3), we can get Ermror
Positions 5,(i=0,1, -, t-1), but it is not easy because
they are non linear system of Equations. To find out
the Solutions of Equations (2) & (3), there are many
ways including Author’s Method® ™.

After getting the positions, from eq.(1),

E, 1 1 . 1 1S,
E, ol o D S,
E,o) o)t . L (@i 0)e ) (s,

(4

Where, a/*(n=0,1,.,t-1)'s and S;’s are all known
Error Positions and Syndromes.
So

t= N
Ei= (Z]lA(i)LSL) / (3] B@)rak)
L=0 k=0

(i=0,1..t-1) 5

Here All A(D);, B(@),'s are all already found from
Equation (4). Since Equation 5 contains only the
GF(Galois field) Adding, Multiplying and Dividing
operations, The Arithmatic Logic Unit for Computing
Eq.(5) (Error Values)
calculating those there operations (Adding, Multiplying
and Dividinging)™ 9.

In Fig. 1 We see Block Diagram of Arithmatic
Logic Unit(ALU). It has two inputs and Generates
the Error Values. The ALU operation is determined
by the OPCODE(2 bit allocated for the ALU
operation from the N bit Micro code of CPU.

needs only circuits for
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ALU which calculates Equations 4) & (5) and
uses only Adding, Multip-lying and Dividing

Circuits.

Fig.

In Next section, we describes more About the
ALU shown in Fig. 1.

II. Structure of Error Value Generating
Arithmatic Logic Unit for Reed Solomon
Decoder

The first operation of the ALU is Addition. In
GF(?) field, Adding is done by 8 bit EXOR gate.
The 2nd opertion is Multiplying and is reallized by
Multiplier in the ALU shown in Fig. 2, and the
Multiplier output goes to ALU output, when Opcode
is 01 and the each bit of the Opcode selects proper
one of 2 MUX inputs.

Adder

ALU OCutput

8
L~

Inverting
cirewi

ALU

Opcode
S[1:0]

2

L
7

2 iy

g 20 Y|, S84 O2|1 HAY|EEE
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Detailed Block Diagram for ALU  which
contains 3 Operations of Adding, Multiplying and

Dividing Circuits.

Fig. 2.
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Table 1. ALU Opcode table for the ALU of Fig.2.
OP Code (S[1:01) Operation
00 A/B (Divide)
01 AB( Multiply)
10 A+B (Add : EXOR )
11 A+B (Add : EXOR )

(393

The 3rd final. operation is Dividing and is reallized
by multiplying A with Inversed B. In this case ALU
Opcode- becomes 00 to select outputs of Inverting
circuit and Multiplier of the ALU in Fig. 2.

Table 1 shows the Opcode pattern for each 3 ALU
operations.

In Next chapter, we show how we implement the
various Circuits of the ALU in Fig. 2.

IV. Detailed Explanation of Divider Circuit for
ALU using Galois Subfield.

Because Divider contains Multiplier, we only
Describe the operation of Divider. As shown in Fig.
3, Divider contains Inverting Circuit and Multiplier
Circuit, so to reduce the gate couts of the Divider,
we need to reduce the gate counts of the Multiplier
and Inverting circuits.

If we use subfield theorym, we can greately reduce
the gate counts of them Also length of the
propagation path is shortened, so speed of the circuits
becomes faster than the other case which doesn’t
use the Subfield theory.

(1) Field Converting Circuit

This only EXOR gate and
Logic Equation is as follows”.

IFA=A0+ A= A0+ BAL where A, 3€ GF(2)
And A0, Al GF(2") then, IF A = (b0, bl, b2, b3, b4,
b5, b6, b7) and A0 = (Z0, Z1, 72, Z3), Al = (Z4, 75,
76, Z7)

circuit contains

(i) GF(2%) to GF(2*) Converter Logic
Z0 = b0 + bl + b5
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Z1 = bl + b3 + bb

Z2 = b2 + b3 + b6

Z3 = bl + b3 + b4 + b6

Z4 = Dbl + b2 + b3 + b5 + b6 + b7
Z5 = b2 + b5 + b6

Z6 = bl + b2 + b3 + b4 + b5 + b6
Z7 =bl + b3 + bd 4 b5

(i) GF(2*) to GF(2®) Converter Logic
b0 = Z0 + Z1 + Z2+Z6+7Z7

bl =71 4+72+4+175
b2 =75+ 73 + Z7
b3 =72 + Z7+ 76
b4 =71 + Z7
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Mutiplier Circuit in GF(2*) used as a one

bb =277 + 75 + 76
b6 =73 + Z5 + 76

b7 =71 + 76 + Z4 + 77

part of the GF(2%) Divider Circuit.
«40: Adder over GF(2*)
+50: Multiplier over GF(2*)

Then

(2) Divider Logic Equation using Multiplier and
[nverting Circuit.

(i) Multiplier Logic in Fig. 3
Suppose that the element C is the product of the

elements A and B.

C=A+B

=(a0 + alB « (b0+b1B
=0 + clf

where a0, al, b0, bl, c0, c1 € GF©2*)

c0=a0b0 + alblY

«60: Y Multtiplier over GF(2%)

cl=a0bl + alb0 + albl

equations (6)

(i) Inverting Circuit Logic

(6)

Fig. 4 shows a block diagram for implementing

Assumming that the inverse of Z is Z !, and
Z=x0 + x18 where x0, x1 € GF(2*), and Z '=y0 +

y18 where y0, yl € GF(2%), then

A —» —V@—>® > —» A/B
GF(2%) to GF(2%) to in GF(2%)
GF(2") A GF(2)
B —JPp | Converter Converter
GF(2*) Field
in GF(28)

<

<>

J8 3 O 29 {MeE=al AMEXIE 9T M|l EEL

Fig. 3. Divider Circuit Block Diagram for ALU shown in Fig. 2.

(3%
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Fig. 5. Two types of CMOS EXOR gate.

Ze Z71=1 7
From equation (7)

ro+zxl
¥0= 20(x0+ 1)+ v(z1?)

_ zl
z0(z0+ 21) + v(21?)

yl 8)

The inverse Circuit represented by (8) is much
simpler and faster than inverting Circuit consisted by
GF(®) elements™.

Finally for Adding operation of ALU, we use a
CMOS EXOR Circuit type A as in Fig. 5. This gate
is simpler than the conventional CMOS EXOR gate B
type resulting in smaller number of total gaté Count.

In Fig. 5, B type EXOR gate needs 6 Transistors
including one CMOS inverter, while Type A needs
only 4 Transistors.

Operating Example of Dividing Circuit :

Let's find A/B, when A=a’, B=a® where A, B €
GF(2}).

Solution: B =a” € GF(®) = o'™a’8 € GF(@Y
from the Conversion Logic equation. From Equation
(8),

y0= o' / (aB+a2a1t) =q9,

Here
x1=( =(20,z1,22,23)=(1,1,1,1)=a$,
and

Tx12 = T (20+z17+22Y2+23Y'3)2

EIE S22 2379 O3S Foty| AT MER 249 HHH LMD HNFR MA o

(3%)
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[

= Y (Z0+z1Y2+22Y4+23Y'6)
= Y (20+z1Y2+22(1+Y3)+z3Y2(1+Y3))
=0, 1, 1, 0)= o3& GF(24).

Also yl= 1/a®+a")=a = e GF@Y.
TheAefore B™'=y0 + y1B = o™+aB Also A=o’c
GF®) = o® + a™Bin GF@'). So A/B= A-B'=
(0 + a" P’ +ap.

Now Apply equation (6) which is implemented as
the Circuit in Fig. 4.

The result is c0=a’+Ya'?(" B =B)=a< GFQ
1), Similarlily, cl = o'+ a®+ o®=a'eGF(®Y. So
C= A/B= A-B '= cO+clfa+ Ba''GF@Y) = o™
€ GF(?) =a"?c GF®), using GF(Z") to GF(2)
transformation. This is Correct !'(*~ A/B= o3/a’=a
“2e GF(2%)).

0]

V. Conclusion and Discussion

Because Divider of ALU contains Multiplier as a
Sub circuit, we only compare the gate Counts of the
Divider of the proposed method and that of classical
Method. The divider is consist of Multiplier and
Inversing circuit. As we see in Table 2 and 3[2],
current method is much better in reducing gate
counts Needed. This means Silicon size required for
ALU is shrinked to about 1/35 of the size for the
classical method™.

For Speed, Because Current proposed method in
this paper uses mostly GF(2*) field operations and

uses just once transfer funtion between GF(28) and
GF(2Y) field, So even more faster ALU operation is

made comparing with that of calssical ALU.

E 2 GFRYEOIA LHeo|sl2of EeE HolE A
5'\_
Table 2. Number of gates needed for Divider of the
GF(2°) field.
AND | EXOR | OR Sub
gates | gates | gates | total
Multiplier 64 73 137
Inverse Circuit 304 494 798

Total Number of gates : 935
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Table 3. Number of gates needed for Divider using
Present Method
AND | EXOR OR Sub
gates gates | gates | Total
GF(2) to '
GF(2) 13 13
Multiplier
in GR(2" b 6 10
Inverse Circuit
in GR(ZY 64 56 10 130
GF) to
GF(2®) 13 13

Total Number of gates : 266

In our future work, we will discuss about the
more efficient Reed-Solomon Encoder design method.
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