References
- E. Charniak, Statistical Language Learning, MIT Press, Cambridge, MA, USA, 1994
- S. A. Hofmeyr, S. Forrest, and A. Somayaji, Intrusion detection using sequences of system calls, Journal of Computer Security, vol. 6, no. 3, pp. 151-180, 1998 https://doi.org/10.3233/JCS-980109
- W. Lee, S. J. Stolfo, and K. W. Mok, A data mining framework for building intrusion detection models, in: IEEE Symposium on Security and Privacy, pp. 120-132, 1999
- A. Murali and M. Rao, A survey on intrusion detection approaches, in: First International Conference on Information and Communication Technologies (ICICT 2005), pp. 233-240, 2005
- K. Rieck and P. Laskov, Detecting unknown network attacks using language models., in: Proceedings of Third International Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA 2006), Berlin, Germany, pp. 74-90, 2006
- M. Z. Shafiq, S. A. Khayam, and M. Farooq, Embedded malware detection using markov n-grams., in: Proceedings of the Fifth Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA 2008), 2008
- F. Peng and D. Schuurmans, Combining naive Bayes and n-gram language models for text classification., in: F. Sebastiani (Ed.), Advances in Information Retrieval, 25th European Conference on IR Research (ECIR 2003), Vol. 2633 of Lecture Notes in Computer Science, Springer, pp. 335-350, 2003
- C. Andorf, A. Silvescu, D. Dobbs, and V. Honavar, Learning classifiers for assigning protein sequences to gene ontology functional families, in: Proceedings of the Fifth International Conference on Knowledge Based Computer Systems (KBCS 2004), pp. 256-265, 2004
- B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In COLT '92: Proceedings of the fifth annual workshop on Computational learning theory, pages 144-152, New York, NY, USA, 1992
- V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc., New York, NY, USA, 1995
- J. C. Na and K. Park, Data compression with truncated suffix trees Proceedings of Data Compression Conference 2000, p. 565, 2000
- M. H. Schulz, S. Bauer, and P. N. Robinson, The generalised k-Truncated Suffix Tree for time-and space-efficient searches in multiple DNA or protein sequences International Journal of Bioinformatics Research and Applications, 4(1), pp. 81-95, 2008 https://doi.org/10.1504/IJBRA.2008.017165
- T. M. Mitchell, Machine Learning McGraw-Hill, 1997
- Y. Liao, and V. R. Vemuri, Using Text Categorization Techniques for Intrusion Detection Proceedings of the 11th USENIX Security Symposium, USENIX Association, 51-59, 2002
- D. Kang, D. Fuller, and V. Honavar, Learning Classifiers for Misuse and Anomaly Detection Using a Bag of System Calls Representation Proceedings of 6th IEEE Systems Man and Cybernetics Information Assurance Workshop (IAW), 2005
- A. Liu, C. Martin, T. Hetherington, and S. Matzner, A Comparison of System Call Feature Representations for Insider Threat Detection Proceedings of 6th IEEE Systems Man and Cybernetics Information Assurance Workshop (IAW), 2005
- S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, Self-Nonself Discrimination in a Computer SP '94: Proceedings of the 1994 IEEE Symposium on Security and Privacy, IEEE Computer Society, 202, 1994
- W. Lee, and S. Stolfo, Data mining approaches for intrusion detection Proceedings of the 7th USENIX Security Symposium, 1998
- C. Warrender, S. Forrest, and B. A. Pearlmutter, Detecting Intrusions using System Calls: Alternative Data Models IEEE Symposium on Security and Privacy, 133-145, 1999
- R. G. Cowell, S. L. Lauritzen, A. P. David, D. J. Spiegelhalter, D. J. Spiegelhater, Probabilistic Networks and Expert Systems, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999
- E. Ukkonen, On-line construction of suffix-trees Algorithmica, 14, 249-260, 1995 https://doi.org/10.1007/BF01206331
- D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology Cambridge University Press, 1997
- K. M. C. Tan, and R. A. Maxion, "Why 6?" Defining the Operational Limits of STIDE, an Anomaly-Based Intrusion Detector Proceedings of the 2002 IEEE Symposium on Security and Privacy, IEEE Computer Society, 2002, 188