DOI QR코드

DOI QR Code

Comparison of Chemical Compositions and Antimicrobial Activities of Essential Oils from Three Conifer Trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa

  • Lee, Jeong-Ho (Korea Forest Seed & Variety Center) ;
  • Lee, Byung-Kyu (Yuhan Research Institute, Yuhan Corporation) ;
  • Kim, Jong-Hee (Department of Food and Nutrition, Seoil College) ;
  • Lee, Sang-Hee (Department of Biological Science and Institute of Bioscience and Biotechnology, Myongji University) ;
  • Hong, Soon-Kwang (Department of Biological Science and Institute of Bioscience and Biotechnology, Myongji University)
  • Published : 2009.04.30

Abstract

The chemical compositions, and antibacterial and antifungal effects of essential oils extracted from three coniferous species, Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa, were investigated. Gas chromatography mass analysis of the essential oils revealed that the major components and the percentage of each essential oil were 16.66% $\beta$-phellandrene and 14.85% $\alpha$-pinene in P. densiflora; 31.45% kaur-16-ene and 11.06% sabinene in C. japonica; and 18.75% bicyclo [2,2,1] heptan-2-ol and 17.41% 2-carene in Ch. obtusa. The antimicrobial assay by agar disc diffusion method showed that $2.2{\mu}g$ of Ch. obtusa oil inhibited most effectively the growth of Escherichia coli ATCC 33312 and Klebsiella oxytoca ATCC 10031, whereas the C. japonica oil gave weak antimicrobial activity. The minimal inhibitory concentration(MIC) values for bacterial strains were in the range of 5.45-21.8 mg/ml depending on essential oils, but most Gram-negative bacteria were resistant even at 21.8 mg oil/ml. P. densiflora oil showed the most effective antifungal activity and the MIC values for Cryptococcus neoformans B42419 and Candida glabrata YFCC 062CCM 11658 were as low as 0.545 and 2.18 mg/ml, respectively. Cryp. neoformans B42419 was the most sensitive to all essential oils in the range of 0.545-2.18 mg/ml. Our data clearly showed that the essential oils from the three conifers had effective antimicrobial activity, especially against fungi.

Keywords

References

  1. Adams, R. P. 2001. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Allured Publishing Corporation, Carol Stream, IL
  2. Asset, G., B. Staels, R. L. Wolff, E. Bauge, Z. Madj, J. C. Fruchart, and J. Dallongeville. 1999. Effects of Pinus pinaster and Pinus koraiensis seed oil supplementation on lipoprotein metabolism in the rat. Lipids 34: 39-44 https://doi.org/10.1007/s11745-999-335-2
  3. Bagchi, D., M. Bagchi, S. J. Stohs, D. K. Das, S. D. Ray, C. A. Kuszynski, S. S. Joshi, and H. G. Pruess. 2000. Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology 148: 187-197 https://doi.org/10.1016/S0300-483X(00)00210-9
  4. Bao, H., A. Kondo, A. Kaga, M. Tada, K. Sakaguti, Y. Inoue, Y. Shimoda, D. Narumi, and T. Machimura. 2008. Biogenic volatile organic compound emission potential of forests and paddy fields in the Kinki region of Japan. Environ. Res. 106: 156-169 https://doi.org/10.1016/j.envres.2007.09.009
  5. Cha, J.-D., E.-K. Jung, B.-S. Kil, and K.-Y. Lee. 2007. Chemical composition and antibacterial activity of essential oil from Artemisia feddei. J. Microbiol. Biotechnol. 17: 2061-2065
  6. Chang, C. W., W. L. Chang, S. T. Chang, and S. S. Cheng. 2008. Antibacterial activities of plant essential oils against Legionella pneumophila. Water Res. 42: 278-286 https://doi.org/10.1016/j.watres.2007.07.008
  7. Cheng, S. S., H. T. Chang, C. L. Wu, and S. T. Chang. 2007. Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresour. Technol. 98: 456-459 https://doi.org/10.1016/j.biortech.2006.01.006
  8. Cheng, S. S. and S. T. Chang. 2002. Antitermitic activity of essential oils from Cryptomeria japonica. Quart. J. Chin. For. 35: 193-199
  9. Cheng, S. S., M. T. Chua, E. H. Chang, C. G. Huang, W. J. Chen, and S. T. Chang. 2008. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour. Technol. 100: 465-470 https://doi.org/10.1016/j.biortech.2007.11.060
  10. Cheng, S. S., H. Y. Lin, and S. T. Chang. 2005. Chemical composition and antifungal activity of essential oils from different tissues of Japanese cedar (Cryptomeria japonica). J. Agric. Food Chem. 53: 614-619 https://doi.org/10.1021/jf0484529
  11. Cowan, M. M. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564-582
  12. Cox, S. D., C. M. Mann, J. L. Markham, H. C. Bell, J. E. Gustafson, J. R. Warmington, and S. G. Wyllie. 2000. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 88: 170-175 https://doi.org/10.1046/j.1365-2672.2000.00943.x
  13. Hammer, K. A., C. F. Carson, and T. V. Riley. 1999. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 86: 985-990 https://doi.org/10.1046/j.1365-2672.1999.00780.x
  14. Harkenthal, M., J. Reichling, H. K. Geiss, and R. Saller. 1999. Comparative study on the in vitro antibacterial activity of Australian tea tree oil, cajuput oil, niaouli oil, manuka oil, kanuka oil, and eucalyptus oil. Pharmazie 54: 460-463
  15. Hong, E.-J., A.-J. Na, B.-G. Choi, C.-C. Choi, and E.-B. Jeung. 2004. Antibacterial and antifungal effects of essential oils from coniferous trees. Biol. Pharm. Bull. 27: 863-866 https://doi.org/10.1248/bpb.27.863
  16. Jardim, C. M., G. N. Jham, O. D. Dhingra, and M. M. Freire. 2008. Composition and antifungal activity of the essential oil of the brazilian Chenopodium ambrosioides L. J. Chem. Ecol. 34: 1213-1218 https://doi.org/10.1007/s10886-008-9526-z
  17. Jennings, W. and T. Shibamoto. 1980. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography. Academic Press, New York
  18. Knobloch, K., A. Pauli, B. Iberl, H. Weigand, and N. Weis. 1989. Antibacterial and antifungal properties of essential oil components. J. Essent. Oil Res. 1: 119-128 https://doi.org/10.1080/10412905.1989.9697767
  19. Kwak, C. S., S. C. Moon, and M. S. Lee. 2006. Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora). Nutr. Cancer 56: 162-171 https://doi.org/10.1207/s15327914nc5602_7
  20. Lee, J.-H., H.-Y. Yang, H.-S. Lee, and S.-K. Hong. 2008. Chemical composition and antimicrobial activity of essential oil from cones of Pinus koraiensis. J. Microbiol. Biotechnol. 18: 497-502
  21. Lee, S. J., K. W. Lee, H. J. Hur, J. Y. Chun, S. Y. Kim, and H. J. Lee. 2007. Phenolic phytochemicals derived from red pine (Pinus densiflora) inhibit the invasion and migration of SKHep- 1 human hepatocellular carcinoma cells. Ann. NY Acad. Sci. 1095: 536-544 https://doi.org/10.1196/annals.1397.058
  22. Li K., L. Qingwang, L. Jian, T. Zhang, Z. Han, D. Gao, and F. Zheng. 2007. Antitumor activity of the procyanidins from Pinus koraiensis bark on mice bearing U14 cervical cancer. Yakugaku Zasshi 127: 1145-1151 https://doi.org/10.1248/yakushi.127.1145
  23. Perry, N. B., R. E. Anderson, N. J. Brennan, M. H. Douglas, A. J. Heaney, J. A. McGimpsey, et al. 1999. Essential oils from dalmatian sage (Salvia officinalis L.): Variations among individuals, plant parts, seasons and sites. J. Agric. Food. Chem. 47: 2048-2054 https://doi.org/10.1021/jf981170m
  24. Terzi, V., C. Morcia, P. Faccioli, G. Val$\grave{e}$, G. Tacconi, and M. Malnati. 2007. In vitro antifungal activity of the tea tree (Melaleuca alternifolia) essential oil and its major components against plant pathogens. Lett. Appl. Microbiol. 44: 613-618 https://doi.org/10.1111/j.1472-765X.2007.02128.x
  25. Yang, J. K., M. S. Choi, W. T. Seo, D. L. Rinker, S. W. Han, G. W. Cheong. 2007. Chemical composition and antimicrobial activity of Chamaecyparis obtusa leaf essential oil. Fitoterapia 78: 149-152 https://doi.org/10.1016/j.fitote.2006.09.026
  26. Zhang, C., H. Li, T. Yun, Y. Fu, C. Liu, B. Gong, and B. Neng. 2008. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Tibetan herbal medicine Dracocephalum heterophyllum Benth. Nat. Prod. Res. 22: 1-11 https://doi.org/10.1080/14786410701619076

Cited by

  1. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans : microscopic observations and chemical characterization of cymbopogon citratus vol.10, pp.None, 2010, https://doi.org/10.1186/1472-6882-10-65
  2. 원예치료에서 식물.자연 접촉이 지니는 치료적 요인 연구동향과 전망 vol.19, pp.4, 2009, https://doi.org/10.5322/jes.2010.19.4.517
  3. Candida属真菌に対する各種精油及び精油成分の抗真菌作用,及びAmphotericin Bの抗真菌作用に及ぼす影響 vol.130, pp.6, 2009, https://doi.org/10.1248/yakushi.130.895
  4. Volatile diterpene emission from dominant conifers in Japan vol.8, pp.4, 2009, https://doi.org/10.5194/bgd-8-6681-2011
  5. Inhibition activity of essential oils obtained from Japanese trees against Skeletonema costatum vol.57, pp.6, 2009, https://doi.org/10.1007/s10086-011-1209-7
  6. A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. A review. vol.27, pp.1, 2009, https://doi.org/10.1002/ffj.2082
  7. Determination and potential importance of diterpene (kaur-16-ene) emitted from dominant coniferous trees in Japan vol.87, pp.8, 2012, https://doi.org/10.1016/j.chemosphere.2012.01.040
  8. 편백나무 잎 추출물 함유 크림의 안정성 평가 vol.29, pp.2, 2009, https://doi.org/10.12925/jkocs.2012.29.2.5
  9. Effect on Emotional Behavior and Stress by Inhalation of the Essential oil from Chamaecyparis obtusa vol.8, pp.4, 2009, https://doi.org/10.1177/1934578x1300800428
  10. Effect on Emotional Behavior and Stress by Inhalation of the Essential oil from Chamaecyparis obtusa vol.8, pp.4, 2009, https://doi.org/10.1177/1934578x1300800428
  11. Essential Oil Characterization of Two Azorean Cryptomeria japonica Populations and Their Biological Evaluations vol.8, pp.12, 2009, https://doi.org/10.1177/1934578x1300801233
  12. Essential oil of <i>Thymus vulgaris</i> L. and <i>Rosmarinus officinalis</i> L.: Gas chromatography-mass spectrometry analysis, cytotoxicity and vol.5, pp.6, 2013, https://doi.org/10.4236/ns.2013.56090
  13. Chemical composition and seasonal variation of Cryptomeria fortunei essential oil from China vol.25, pp.5, 2013, https://doi.org/10.1080/10412905.2013.840807
  14. Phenylpropanoids of Plant Origin as Inhibitors of Biofilm Formation by Candida albicans vol.24, pp.9, 2009, https://doi.org/10.4014/jmb.1402.02056
  15. Alpha-Pinene Exhibits Anti-Inflammatory Activity Through the Suppression of MAPKs and the NF-κB Pathway in Mouse Peritoneal Macrophages vol.43, pp.4, 2009, https://doi.org/10.1142/s0192415x15500457
  16. Physiological effect of olfactory stimulation by Hinoki cypress ( Chamaecyparis obtusa ) leaf oil vol.34, pp.1, 2009, https://doi.org/10.1186/s40101-015-0082-2
  17. DifferentiatingChamaecyparis obtusaandChamaecyparis pisiferaLeaves Using1H Nuclear Magnetic Resonance Spectroscopy : DifferentiatingC. obtusaandC. pisifera vol.36, pp.4, 2009, https://doi.org/10.1002/bkcs.10239
  18. Allergic contact dermatitis caused by essential oil of Hinoki (Chamaecyparis obtusa) on the periungual area vol.73, pp.4, 2015, https://doi.org/10.1111/cod.12422
  19. Antiproliferative and Apoptotic Activity of Chamaecyparis obtusa Leaf Extract against the HCT116 Human Colorectal Cancer Cell Line and Investigation of the Bioactive Compound by Gas Chromatography-Mas vol.20, pp.10, 2015, https://doi.org/10.3390/molecules201018066
  20. Effects of Essential Oil from Hinoki Cypress, Chamaecyparis obtusa , on Physiology and Behavior of Flies vol.10, pp.12, 2009, https://doi.org/10.1371/journal.pone.0143450
  21. Anti-cariogenic Properties of α-Pinene, a Monoterpene in Plant Essential Oil vol.42, pp.1, 2009, https://doi.org/10.11620/ijob.2017.42.1.025
  22. Antifungal activity of pinosylvin from Pinus densiflora on turfgrass fungal diseases vol.60, pp.3, 2009, https://doi.org/10.3839/jabc.2017.034
  23. 편백나무 잎 추출물의 성분분석과 면역효능에 관한 연구 vol.50, pp.1, 2009, https://doi.org/10.15324/kjcls.2018.50.1.37
  24. Absolute quantification of terpenes in conifer-derived essential oils and their antibacterial activity vol.11, pp.1, 2009, https://doi.org/10.1186/s40543-020-00212-y
  25. Absolute quantification of terpenes in conifer-derived essential oils and their antibacterial activity vol.11, pp.1, 2009, https://doi.org/10.1186/s40543-020-00212-y
  26. Verification of Chromatographic Profile of Primary Essential Oil of Pinus sylvestris L. Combined with Chemometric Analysis vol.25, pp.13, 2009, https://doi.org/10.3390/molecules25132973
  27. Antioxidant Properties of 7 Domestic Essential Oils and Identification of Physiologically Active Components of Essential Oils against Candida albicans vol.49, pp.1, 2021, https://doi.org/10.5658/wood.2021.49.1.23
  28. Chemical Composition, Anti-radical and Antibacterial Activities of Essential Oils from Needles of Pinus halepensis Mill., P. pinaster Aiton., and P. pinea L vol.24, pp.3, 2009, https://doi.org/10.1080/0972060x.2021.1943541
  29. Original Contributions to the Chemical Composition, Microbicidal, Virulence-Arresting and Antibiotic-Enhancing Activity of Essential Oils from Four Coniferous Species vol.14, pp.11, 2009, https://doi.org/10.3390/ph14111159
  30. Variations in Essential Oil Chemical Composition and Biological Activities of Cryptomeria japonica (Thunb. ex L.f.) D. Don from Different Geographical Origins-A Critical Review vol.11, pp.23, 2009, https://doi.org/10.3390/app112311097
  31. Essential Oil Variability of Azorean Cryptomeriajaponica Leaves under Different Distillation Methods, Part 1: Color, Yield and Chemical Composition Analysis vol.12, pp.1, 2009, https://doi.org/10.3390/app12010452