DOI QR코드

DOI QR Code

Production, Purification, and Characterization of Soluble NADH-Flavin Oxidoreductase(StyB) from Pseudomonas putida SN1

  • Yeo, Yun-Ji (Department of Bio and Nanochemistry, Kookmin University) ;
  • Shin, Seung-Hee (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Lee, Sun-Gu (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Park, Sung-Hoon (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Jeong, Yong-Joo (Department of Bio and Nanochemistry, Kookmin University)
  • 발행 : 2009.04.30

초록

In recombinant strains, many proteins and enzymes are expressed as inactive and insoluble inclusion bodies. For soluble expression of an active form of StyB, an NADH-flavin oxidoreductase, several recombinant Escherichia coli strains were developed and tested. Among them, strain BL21(DE3)pLysS effectively produced an active and soluble form of StyB as about 9% of the total protein content, when cultivated at $20^{\circ}C$ with 0.5 mM IPTG. The solubly expressed StyB has the highest oxidoreductase activity at pH 6.5-7.5 and $37^{\circ}C$. Substrate dependence profiles of the StyB-catalyzed reaction showed that the maximum specific activity($V_m$) and half saturation constant($K_m$) were $1,867{\pm}148\;U/mg$ protein and $51.6{\pm}11{\mu}M$ for NADH, and $1,274{\pm}34\;U/mg$ protein and $8.2{\pm}1.2{\mu}M$ for FAD, respectively. This indicates that solubly produced StyB has 6- to 9-fold higher oxidoreductase activities than the in vitro refolded StyB from inclusion bodies.

키워드

참고문헌

  1. Bae, J. W., J. H. Han, M. S. Park, S. G. Lee, E. Y. Lee, Y. J. Jeong, and S. H. Park. 2006. Development of recombinant Pseudomonas putida containing homologous styrene monooxygenase genes for the production of (S)-styrene oxide. Biotechnol. Bioprocess Eng. 11: 530-537 https://doi.org/10.1007/BF02932079
  2. Bae, J. W., S. H. Shin, M. Raj, S. E. Lee, S. G. Lee, Y. J. Jeong, and S. H. Park. 2008. Construction and characterization of a recombinant whole-cell biocatalyst of Escherichia coli expressing styrene monooxygenase under the control of arabinose promoter. Biotechnol. Bioprocess Eng. 13: 69-76 https://doi.org/10.1007/s12257-007-0172-z
  3. Beltrametti, F., A. M. Marconi, G. Bestetti, C. Colombo, E. Galli, M. Ruzzi, and E. Zennaro. 1997. Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl. Environ. Microbiol. 63: 2223-2239
  4. Cabrita, L. D. and S. P. Bottomley. 2004. Protein expression and refolding - A practical guide to getting the most out of inclusion bodies. Biotechnol. Annu. Rev. 10: 31-50 https://doi.org/10.1016/S1387-2656(04)10002-1
  5. Choi, W. J. and C. Y. Choi. 2005. Production of chiral epoxides: Epoxide hydrolase-catalyzed enantioselective hydrolysis. Biotechnol. Bioprocess Eng. 10: 167-179 https://doi.org/10.1007/BF02932009
  6. Di Gennaro, P., A. Colmegna, E. Galli, G. Sello, F. Pelizzoni, and G. Bestetti. 1999. A new biocatalyst for production of optically pure aryl epoxides by styrene monooxygenase from Pseudomonas fluorescens ST. Appl. Environ. Microbiol. 65: 2794-2797
  7. Furuhashi, K. 1992. Biological routes to optically active epoxides, pp. 167-186. In A. N. Collins, G. N. Sheldrake, and J. Crosby (eds.). Chirality in Industry. John Wiley & Sons Ltd., Chichester, United Kingdom
  8. Hartmans, S. 1995. Microbial degradation of styrene, pp. 227-239. In V. P. Singh (ed.), Biotransformations: Microbial Degradation of Health Risk Compounds. Elsevier Science, Amsterdam, The Netherlands
  9. Hartmans, S., M. J. van der Werft, and J. A. M. de Bont. 1990. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl. Environ. Microbiol. 56: 1347-1351
  10. Hollmann, F., P.-C. Lin, B. Witholt, and A. Schmid. 2003. Stereospecific biocatalytic epoxidation: The first example of direct regeneration of a FAD-dependent monooxygenase for catalysis. J. Am. Chem. Soc. 125: 8209-8217 https://doi.org/10.1021/ja034119u
  11. Kantz, A., F. Chin, N. Nallamothu, T. Nguyen, and G. T. Gassner. 2005. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase. Arch. Biochem. Biophys. 442: 102-116 https://doi.org/10.1016/j.abb.2005.07.020
  12. Kim, H. S., J. H. Lee, S. Park, and E. Y. Lee. 2004. Biocatalytic preparation of chiral epichlorohydrins using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodotorula glutinis. Biotechnol. Bioprocess Eng. 9: 62-64 https://doi.org/10.1007/BF02949324
  13. Kim, Y. C., S. Kwon, S. Y. Lee, and H. N. Chang. 1998. Effect of pLysS on the production of bioadhesive precursor protein by fed-batch cultivation of recombinant Escherichia coli. Biotechnol. Lett. 20: 799-803 https://doi.org/10.1023/B:BILE.0000015926.97548.cf
  14. Lin, K., I. Kurland, L. Z. Xu, A. J. Lange, J. Pilkis, M. R. El-Maghrabi, and S. J. Pilkis. 1990. Expression of mammalian liver glycolytic/gluconeogenic enzymes in Escherichia coli: Recovery of active enzyme is strain and temperature dependent. Protein Express. Purif. 1: 169-176 https://doi.org/10.1016/1046-5928(90)90012-N
  15. O'Leary, N. D., K. E. O'Connor, W. Duetz, and A. D. W. Dobson. 2001. Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiology 147: 973-979 https://doi.org/10.1099/00221287-147-4-973
  16. Otto, K., K. Hofstetter, M. Rothlisberger, B. Witholt, and A. Schmid. 2004. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavindiffusible monooxygenase. J. Bacteriol. 186: 5292-5302 https://doi.org/10.1128/JB.186.16.5292-5302.2004
  17. Panke, S., M. Held, M. G. Wubbolts, B. Witholt, and A. Schmid. 2002. Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol. Bioeng. 80: 33-41 https://doi.org/10.1002/bit.10346
  18. Panke, S., V. Lorezo, A. Kaiser, B. Witholt, and M. G. Wubbolts. 1999. Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous twoliquid- phase application. Appl. Environ. Microbiol. 65: 5619- 5623
  19. Panke, S., B. Witholt, A. Schmid, and M. G. Wubbolts. 1998. Towards a biocatalyst for (S)-styrene oxide production:Characterization of the styrene degradation pathway of Pseudomonas sp. strain VBL120. Appl. Environ. Microbiol. 64: 2032-2043
  20. Panke, S., M. G. Wubbolts, A. Schmid, and B. Witholt. 2000. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol. Bioeng. 69: 91-100 https://doi.org/10.1002/(SICI)1097-0290(20000705)69:1<91::AID-BIT11>3.0.CO;2-X
  21. Park, M. S., J. W. Bae, J. H. Han, E. Y. Lee, S. G. Lee, and S. H. Park. 2006. Characterization of styrene catabolic genes of Pseudomonas putida SN1 and construction of a recombinant Escherichia coli containing styrene monooxygenase gene for the production of (S)-styrene oxide. J. Microbiol. Biotechnol. 16: 1032-1040
  22. Park, M. S., J. H. Han, S. S. Yoo, E. Y. Lee, S. G. Lee, and S. H. Park. 2005. Degradation of styrene by a new isolate Pseudomonas putida SN1. Korean J. Chem. Eng. 22: 418- 424 https://doi.org/10.1007/BF02719421
  23. Picaud, S., M. E. Olsson, and P. E. Brodelius. 2007. Improved conditions for production of recombinant plant sesquiterpene synthases in Escherichia coli. Protein Express. Purif. 51: 71-79 https://doi.org/10.1016/j.pep.2006.06.025
  24. Riedstra, S., G. Leite, C. Ferreira, F. B. Gomes, P. M. P. Costa, and J. P. M. Ferreira. 2007. Optimization of the expression of single-chain antibodies using different Escherichia coli systems. J. Biotech. 131: S251-S252
  25. Schein, C. H. and N. H. M. Noteborn. 1988. Formation of soluble recombinant proteins in E. coli is favored by lower growth temperature. Biotechnology 6: 291-294 https://doi.org/10.1038/nbt0388-291
  26. Takagi, H., Y. Morinaga, M. Tsuchiya, H. Ikemura, and M. Inauyi. 1988. Control of folding of proteins secreted by a high expression sensitive vector, p 1N-111-ompA: 16-fold increase in production of active subtilisin in E. coli. Biotechnology 6: 948- 950 https://doi.org/10.1038/nbt0888-948
  27. Velasco, A., S. Alonso, J. L. Garcia, J. Perera, and E. Diaz. 1998. Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J. Bacteriol. 180: 1063- 1071
  28. Wang, C. C., J. A. Badylak, S. E. Lux, R. Moriyama, J. E. Dixon, and P. S. Low. 1992. Expression, purification, and characterization of the functional dimeric cytoplasmic domain of human erythrocyte band 3 in Escherichia coli. Protein Sci. 1: 1206-1214 https://doi.org/10.1002/pro.5560010913

피인용 문헌

  1. Electroenzymatic synthesis of (S)-styrene oxide employing zinc oxide/carbon black composite electrode vol.47, pp.7, 2010, https://doi.org/10.1016/j.enzmictec.2010.08.005
  2. Expression and characterization of styrene monooxygenases of Rhodococcus sp. ST-5 and ST-10 for synthesizing enantiopure (S)-epoxides vol.96, pp.2, 2009, https://doi.org/10.1007/s00253-011-3849-3
  3. Molecular dissection of a putative iron reductase from Desulfotomaculum reducens MI-1 vol.467, pp.3, 2015, https://doi.org/10.1016/j.bbrc.2015.10.016
  4. Catalytic and hydrodynamic properties of styrene monooxygenases from Rhodococcus opacus 1CP are modulated by cofactor binding vol.5, pp.1, 2009, https://doi.org/10.1186/s13568-015-0112-9
  5. Biodegradation of the Organic Disulfide 4,4′-Dithiodibutyric Acid by Rhodococcus spp. vol.81, pp.24, 2015, https://doi.org/10.1128/aem.02059-15
  6. Expression of genes encoding the luciferase from Photobacterium leiognathi in Escherichia coli Rosetta (DE3) and its application in NADH detection vol.33, pp.6, 2009, https://doi.org/10.1002/bio.3501
  7. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities vol.7, pp.3, 2009, https://doi.org/10.3390/biology7030042