Serotype and antimicrobial susceptibility of Salmonella spp. isolated from pigs and cattle

소와 돼지유래 Salmonella속 균의 혈청형 및 약제감수성

  • Lee, Woo-Won (Veterinary Service Laboratory, Busan Metropolitan City Institute of Health and Environment) ;
  • Jung, Byeong-Yeal (Nationa1 Veterinary Research & Quarantine Service) ;
  • Lee, Gang-Rok (Veterinary Service Laboratory, Busan Metropolitan City Institute of Health and Environment) ;
  • Lee, Dong-Soo (Veterinary Service Laboratory, Busan Metropolitan City Institute of Health and Environment) ;
  • Kim, Yong-Hwan (College of Veterinary Medicine, Gyeongsang National University)
  • 이우원 (부산광역시 보건환경연구원 축산물위생검사소) ;
  • 정병열 (국립수의과학검역원) ;
  • 이강록 (부산광역시 보건환경연구원 축산물위생검사소) ;
  • 이동수 (부산광역시 보건환경연구원 축산물위생검사소) ;
  • 김용환 (경상대학교 수의과대학)
  • Published : 2009.03.30

Abstract

At the present study, it was aimed to explore the states of antimicrobial resistant Salmonella spp. isolates from 3,850 pigs (2,732 ileocecocolic lymphnodes and 1,118 cecal contents) and 1,764 cattle (965 cecal lymphnodes and 799 cecal contents) slaughtered in Busan province from December 2000 to November 2001. Among 5,614 samples, 457 of Salmonella spp. were isolated from pig lymphnodes (13.5%), pig cecal contents (4.4%), cattle lymphnodes (3.5%) and cattle cecal contents (0.5%). Salmonella spp. were showed different isolation ratio, that was 10.8% in summer, 9.0% in autumn, 8.4% in spring and 5.0% in winter. As a result of serotyping, B group (65.4%) were identified as the most common in pigs and cattle, in order of $C_1$ (14.0%), $D_1$ (5.5%), $C_2$ (4.2%), $E_1$ (4.2%) and L (3.5%). 34 serotypes were found, among them, Salmonella Typhimurium (S. Typhimurium) (21.0%) was the most common serotype from pigs and cattle. The major serotypes were in order of S. Derby (15.3%), S. Schwarzengrund (14.7%), S. Typhimurium var Copenhagen (9.2%), S. Mbandaka (5.7%), S. Enteritidis (5.5%) and S. Ruiru (3.5%). The most common serotype was S. Typhimurium in pigs, and S. Ruiru in cattle. S. Ruiru was firstly isolated from pigs and cattle in Korea. In antimicrobial susceptibility test, all the isolates were demonstrated susceptibility to norfloxacin and ofloxacin. But the isolates were showed resistance other antibiotics in order of doxycycline (68.3%), tetracycline (67.8%), penicillin (54.5%) and streptomycin (52.5%). S. Typhimurium were exhibited resistance to ampicillin (34.8%), chloramphenicol (36.2%), streptomycin (94.9%), sulfamethoxazole/trimethoprim (34.8%) and tetracycline (97.8%). There were 53 strains (38.4%) which had multi drug resistant (MDR) isolates, resistant to more than 6 antimicrobial agents. The most common resistance patterns of MDR isolates were ampicillin, chloramphenicol, carbenicillin, doxycycline, nalidixic acid, penicillin, streptomycin, sulfamethoxazole/trimethoprim and tetracycline (ACCbDNaPSSuT).

Keywords

References

  1. 강호조, 손원근.1999. 한우사육장내 Salmonella속 균의 존재 관련요인 분석. 한국수의공중보건학회지 23(2): 121-126
  2. 김규태. 1999. 도축돈의 장간막림프절에서 분리한 Salmonella속 균의 생물화학적 특성 및 혈청형. 경북대학교 대학원 석사학위논문
  3. 김상윤.2000. 경북지역 가축에서 분리된 Salmonella속 균의 역학적 특성 및 병원성. 안동대학교 대학원 박사학위 논문
  4. 정석찬, 최원필. 1986. 牛由來의 Salmonella속 균에 대히여. 대한수의학회지 26(1): 79-85
  5. 최원필, 이희석, 여상건 등 1986. 양돈장에서 살모넬라감염증의 역학적 연구,1. 발생 및 오염상황, 혈청형과 Salmonella typhimurium의 생물형. 대한수의학회지 26(1): 49-59
  6. 최원필, 이희석, 여상건 등. 1988. 우, 돈에서 분리한 Salmonella 유래 R Plasmid의 유전학적 및 분자생물학적 성상에 관한 연구 I. 유우에서 Salmonella속 균의 분포상황 및 약제내성. 대한수의학회지 28(2): 331-337
  7. 최원필, 이희석, 여상건 등 1989. 우, 돈에서 분리한 Salmonella 유래 R Plasmid의 유전학적 및 분자생물학적 성상에 관한 연구 II. R Plasmid의 비적합성 및 plasmid profile. 대한수의학회지 29(2): 139-147
  8. Aguirre PM, Cacho JB and Lopez M. 1990. Rapid fluorescence method for screening Salmonella spp. from enteric differential agars. J Clin Microbiol 28: 148-149
  9. Baggesen DL, Sandvang D, Aarestrup F. 2000. Cahracterization of Salmonella enterica serovar Typhimurium DTl04 isolated from Denmark and comparison with isolates from Europe and the Unitεd States. J Clin MicrobioI 38(4): 1581-1586
  10. Bahnson PB, Fedorka-Cray PJ. 1996. Salmonella on farms; Production factors associatcd with high prcvalencc. In: research on salmonellosis. In the Food Safety Consortium. United States Animal Health Association. Alkansas: 17
  11. Bauer A W, Kirby WMM, Sherris JC. 1966. Antibiotic susceptibìlity testìng by a standardîzed sìngle disk me thod. Am J Clin Pathol 45: 493-496
  12. Bean NH, Griffin PM. 1990. Foodbome disease outbreaks in the Unitcd States, 1973-1987: Pathogen, vehicles and trends. J Food Prot 53(9): 804-817
  13. Betancor L, Schelotto F, Martinez A, et al. 2004. Random amplified polymorphic DNA and phenotyping analysis of Salmonclla entcrica scrovar Entcritidis isolatcs collected from humans and poultry in Uruguay from 1995 to 2002. J Clin MicrobioI 42(3): 1155-1162 https://doi.org/10.1128/JCM.42.3.1155-1162.2004
  14. Bosworth B, Stabel T. 1998. Alimentary disease and bacteria after weaning. Proc 15th IPVS congress, Birmingham, England: 63-70
  15. Bean NH, Griffin PM. 1990. Foodbome disease outbreaks in the Unitcd States, 1973-1987: Pathogen, vehicles and trends. J Food Prot 53(9): 804-817
  16. Bryant MC. 1972. Antibiotics and thcir labonα tory control. 2nd ed. Butterworth, London. 41
  17. Chiu CH, Tang P, Chu C, et al. 2005. The genomc sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res 33(5): 1690-1698 https://doi.org/10.1093/nar/gki297
  18. Datta NR. 1977. Factors in Enterobacteriaceaι ln: R factor drug resistance plasmid edited by Mitsuhashi. University Park Press Baltimore: 255-272
  19. Davies RH, Dalziel R, Gibbens JC, et al. 2004. National sur vcy for Salmonella in pigs, cattle and shccp at slaughter in Great Britain (1999-2000). J Appl Microbiol 96(4): 750-760 https://doi.org/10.1111/j.1365-2672.2004.02192.x
  20. Davis PR, Morrow WE, Jones FT. 1997. Prevalence of Sal- monella fishing swine raised in differcnt production systems in North Carolina, USA. Epidemiol lnfect 119(2): 237-244 https://doi.org/10.1017/S095026889700784X
  21. Difco Lab. 1977. Serological identification of Salmonella. Dctroit Michican USA
  22. Duijkeren EV, Wannet WJB, Houwers DJ, et al. 2002. Serotype and phage type distribution of Salmonella strains isolated from humans, cattle, pigs, and chickens in the Nctherlands from 1984 to 2001. J Clin Microbiol 40(11): 3980-3985 https://doi.org/10.1128/JCM.40.11.3980-3985.2002
  23. Duijkeren EV. Wannet WJB, Houwers DJ. et al. 2003. Anti-microbail susceptibilities of Salmonella strains iso-lated from humans, cattle, pigs, and chickens in the Netherlands from 1984 to 2001. J Clin Microbiol 41(8):3574-3578 https://doi.org/10.1128/JCM.41.8.3574-3578.2003
  24. Edrington TS, Schultz CL, Bischoff KM, et al. 2004. Antimícrobial resistance and serotype prevalence of Sal- monella isolated from dairy cattle in the southwestcrn United States. Microb Drug Resist 10(1): 51-56 https://doi.org/10.1089/107662904323047808
  25. Edwards PR, Ga1ton MM. 1967. Salmonellosis. Adv Vet Sci 11: 1-63 https://doi.org/10.4142/jvs.2010.11.1.1
  26. Edwards PR, Ewing WH. 1986. Identification of Enterobμcteriaceae. 4th. Elsevier Science Pub. Co., New York
  27. Esaki H, Morioka A, Ishhara K, et al. 2004. Antimicrobial susceptibilities of Salmonella isolated from cattle, swine and poultry (2001~2002): report from Japanesc veterinary antìmicrobial resistance monitorìng program. J Antimicrob Chemother 53: 266-270 https://doi.org/10.1093/jac/dkh081
  28. Helmuth R, Stephan R, Bunge C, et al. 1985. Epidemiology of virulence associated plasmids and outer membrane protein patterns within sevcn eommon Salmonella serotypes. lnfect lmmun 48:175-182
  29. Murray PR, Pfaliεr MA, Tenouer FC, et al. 1999. Manual of Clìnical Microbiology. 7th ed. ASM Press: 467-471
  30. National Committce for Clinical Laboratory Standards. 1988. Performance standards for antirnicrobial disc susceptibility tests. 6th ed. Approved standard. NCCLS 18(1):M2-A6
  31. Nygard K, Jong BD, Guerìn PJ, et al. 2004. Emergence of new Salmonella Enteritidis phage types in Europe Surveillance of infections in retuming travellers, BMCMed 2: 32 https://doi.org/10.1186/1741-7015-2-32
  32. O' Hare C, Doran G, Delappe N. et al. 2004. Antimicrobial resistance and phage types of human and non-human Salmonella enterica isolates in lreland, 1998-2003 Commun Dis Public Health 7(3): 193-199
  33. Rabsch W, Andrews HL, Kingsley RA, et al. 2002. Sal-monella enterica sεrotypε Typhimurium and its hostadapted variants. Infect lmmun 70(5): 2249-2255 https://doi.org/10.1128/IAI.70.5.2249-2255.2002
  34. Sato G, Kodama H. 1974. Appearance of R factor mediated drug rcsistance in Salmonella typhimurium excrctcd by carrier calves on a feedlot. Jpn J Vet Sci 22: 72-79
  35. Schwartz KJ. 1999. Salmonellosis. In: disease of swine. 8th ed. Straw BE, D'Allaire WL, Mengeling WL, Taylor DJ eds. Iowa State Univcrsìty Press: 535-551
  36. Smith BP, Roden LD, Thurmond MC. 1994. Prevalence of Salmonellae in cattle and in the environment on Califomia dairies. JAMA 205(3): 467-471
  37. Swanenburg M, Urlings HA, Snijders JM, et al. 2001. Salmonella in slaughter pigs: prevalence, serotypes and critical control points during slaughter in two slaugh terhouses. lnt J Food MicrobioI 70(3): 243-254 https://doi.org/10.1016/S0168-1605(01)00545-1
  38. Taitt CR, Shubin YS, Angel R, et al. 2004. Detection of Sal-monella enterica serovar Typhimurium by using a rapid, array-based immunosensor. Appl Environ Microbiol 70(1):152-158 https://doi.org/10.1128/AEM.70.1.152-158.2004
  39. Tansel O, Ekuklu G, Otkun M, et al. 2003. A food-borne out-break caused by Salmonella Enteritidis. Yonsei Med J 44(2):198-202