Isolation and Identification of Lactic Acid Bacteria from Sourdough with High Exopolysaccharide Production Ability

  • Jung, Seung-Won (Department of Food Science and Technology, Dongguk University) ;
  • Kim, Wang-June (Department of Food Science and Technology, Dongguk University) ;
  • Lee, Kwang-Geun (Department of Food Science and Technology, Dongguk University) ;
  • Kim, Cheol-Woo (Korea Advanced Food Research Institute) ;
  • Noh, Wan-Seob (Department of Food Science and Technology, Dongguk University)
  • Published : 2009.04.30

Abstract

To isolate lactic acid bacteria having high exopolysaccharides (EPS) production ability, 50 strains were initially isolated from the sourdough. Twenty-one strains formed highly mucoid colonies on the sucrose agar medium, which are indicative of active EPS synthesis. DU-07, DU-10, DU-12, DU-19, and DU-21 produced $11.51{\pm}0.167$, $13.09{\pm}0.193$, $12.72{\pm}0.108$, $11.61{\pm}0.284$, and $13.32{\pm}0.094\;g/L$ EPS, respectively, in MRS medium. The isolated strains, DU-10, DU-12, and DU-21, were identified as Enterococcus flavescens, Enterococcus faecium, and Lactobacillus amylovorus, respectively, by using API 50CHL kit and determining partial sequences of their 16S rDNA. Especially, L. amylovorus DU-21 showed the highest production of EPS, as well as the highest inhibitory activities against pathogenic (p<0.05). Interestingly, the L. amylovorus DU-21 seem to be endemic to sourdough fermentations, as they have not been isolated from other environments.

Keywords

References

  1. De Vuyst L, De Vin F, Vaningelgem F, Degeest B. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11:687-707 (2001) https://doi.org/10.1016/S0958-6946(01)00114-5
  2. Sutherland IW. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 16: 41-46 (1998) https://doi.org/10.1016/S0167-7799(97)01139-6
  3. De Vuyst L, Degeest B. Exopolysaccharides from lactic acid bacteria. Technological bottlenecks and practical solutions. Macromol. Symp. 140: 31-41 (1999) https://doi.org/10.1002/masy.19991400105
  4. German B, Schiffrin ED, Reniero R, Mollet B, Pfecfer A, Neeser JR. The development of functional foods: Lessons from the gut. Trends Biotechnol. 17: 492-499 (1990) https://doi.org/10.1016/S0167-7799(99)01380-3
  5. Kitazawa H, Harata T, Uemura J, Saito T, Kaneko T, Itoh T. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii spp. bulgaricus. Int. J. Food Microbiol. 40: 169-175 (1998) https://doi.org/10.1016/S0168-1605(98)00030-0
  6. Chabot S, Yu HL, De Leseleuc L, Cloutier D, Van Calsteren MR, Lessard M, Roy D, Lacroix M, Oth D. Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6, and IL-12 in human and mouse cultured immunocompetent cells, and IFN-$\gamma$ in mouse splenocytes. Lait 81: 683-697 (2001) https://doi.org/10.1051/lait:2001157
  7. Nakajima H, Suzuki Y, Kaizu H, Hirota T. Cholesterol lowering activity of ropy fermented milk. J. Food Sci. 57: 1327-1329 (1992) https://doi.org/10.1111/j.1365-2621.1992.tb06848.x
  8. De Vuyst L, Ganzle MG. Second International Symposium on Sourdough: From Fundamentals to Applications. Trends Food Sci. Tech. 16: 2-3 (2005) https://doi.org/10.1016/j.tifs.2004.08.003
  9. Vogel RF, Knorr R, Müller MRA, Steudel U, Gänzle MG, Ehrmann M. Non-dairy lactic fermentations: The cereal world. Anton. Leeuw. Int. J.G. 76: 403-411 (1999) https://doi.org/10.1023/A:1002089515177
  10. Gobbetti M, Corsetti A, Rossi J, La Rosa F, De Vincenzi S. Identification and clustering of lactic acid bacteria and yeasts from wheat sourdoughs of central Italy. Ital. J. Food Sci. 1: 85-94 (1994)
  11. Ehrmann MA, Vogel RF. Molecular taxonomy and genetics of sourdough lactic acid bacteria. Trends Food Sci. Tech. 16: 31-42 (2005) https://doi.org/10.1016/j.tifs.2004.06.004
  12. Paramithiotis S, Chouliaras Y, Tsakalidous E, Kalantzopoulos G. Application of selected starter cultures for the production of wheat sourdough bread using a traditional three-stage procedure. Process Biochem. 40: 2813-2819 (2005) https://doi.org/10.1016/j.procbio.2004.12.021
  13. Yang Z, Huttunen E, Staaf M, Widmalm G, Tenhu H. Separation, purification, and characterization of extracellular polysaccharides produced by slime-forming Lactococcus lactis ssp. cremoris strains. Int. Dairy J. 9: 631-638 (1999) https://doi.org/10.1016/S0958-6946(99)00133-8
  14. Yoon JH, Lee ST, Park YH. Inter- and intraspecific phylogenetic analysis of genus nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48: 187-194 (1996) https://doi.org/10.1099/00207713-48-1-187
  15. Thompson JD, Higgins DG, Gibson TJ, Clustal W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighing, position-specific gap penalties, and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 (1994) https://doi.org/10.1093/nar/22.22.4673
  16. Monchois V, Willwmot RM, Monsan P. Glucansucrases:Mechanism of action and structure-function relationships. FEMS Microbiol. Rev. 23: 131-151 (1999) https://doi.org/10.1111/j.1574-6976.1999.tb00394.x
  17. Laws A, Marshall VM. The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria. Int. Dairy J. 11: 709-721 (2001) https://doi.org/10.1016/S0958-6946(01)00115-7
  18. Tieking M, Kakitzky S, Valcheva R, Korakli M, Vogel RF, Ganzle MG. Extracellular homopolysaccharides and oligosaccharides from intestinal lactobacilli. J. Appl. Microbiol. 99: 692-702 (2005) https://doi.org/10.1111/j.1365-2672.2005.02638.x
  19. Catzeddu P, Mura E, Parente E, Sanna M, Farris GA. Molecular characterization of lactic acid bacteria from sourdough breads produced in Sardinia (Italy) and multivariable statistical analyses of results. Syst. Appl. Microbiol. 29: 138-144 (2006) https://doi.org/10.1016/j.syapm.2005.07.013
  20. De Vuyst L, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swings J, Kalantzopoulos G, Tsakalidou E, Messens W. The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Appl. Environ. Microb. 68: 6059-6069 (2002) https://doi.org/10.1128/AEM.68.12.6059-6069.2002
  21. Muller MRA, Wolfrum G, Stolz P, Ehrmann MA, Vogel RF. Monitoring the growth of Lactobacillus species during a rye flour fermentation. Food Microbiol. 18: 217-227 (2001) https://doi.org/10.1006/fmic.2000.0394
  22. Sanni AI, Onilude AA, Ogunbanwo ST, Fadahunsi IF, Afolabi RO. Production of exopolysaccharides by lactic acid bacteria isolated from traditional fermented foods in Nigeria. Eur. Food Res. Technol. 214: 405-407 (2002) https://doi.org/10.1007/s00217-002-0499-9
  23. Cerning J, Bouillanne C, Landom M, Mesmazeaud M. Isolation and characterization of exopolysaccharides from skim-forming mesophilic lactic acid bacteria. J. Dairy Sci. 75: 692-699 (1992) https://doi.org/10.3168/jds.S0022-0302(92)77805-9
  24. Bae IH, Huh JW. Isolation of Lactobacillus spp. producing exopolysaccharide and optimization of its production. Korean J. Biotechnol. Bioeng. 17: 169-175 (2002)
  25. Kim HJ, Chang HC. Isolation and characterization of exopolysaccharide producing lactic acid bacteria from kimchi. Korean J. Microbiol. Biotechnol. 34: 196-203 (2006)
  26. Purwandari U, Shah NP, Vasiljevic T. Effects of exopolysaccharideproducing strains of Streptococcus thermophilus on technological and rheological properties of set-type yoghurt. Int. Dairy J. 17:1344-1352 (2007) https://doi.org/10.1016/j.idairyj.2007.01.018
  27. Van den Berg DJC. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Appl. Environ. Microb. 61: 2840-2844 (1995)
  28. Tannock G. Identification of lactobacilli and bifidobacteria. pp. 45-56. In: Probiotics. A Critical Review. Tannock G (ed). Horizon Scientific Press, Norfolk, England (1999)
  29. Yeung PSM, Sanders ME, Kitts CL, Cano R, Tong PS. Speciesspecific identification of commercial probiotic strains. J. Dairy Sci. 85: 1039-1051 (2002) https://doi.org/10.3168/jds.S0022-0302(02)74164-7
  30. Gelsomino R, Vancanneyt M, Condon S, Swings J, Cogan TM. Enterococcal diversity in the environment of an Irish cheddar-type cheesemaking factory. Int. J. Food Microbiol. 71: 177-188 (2001) https://doi.org/10.1016/S0168-1605(01)00620-1
  31. Franz CMAP, Holzapfel WH, Stiles ME. Enterococci at the crossroads of food safety? Int. J. Food Microbiol. 47: 1-24 (1999) https://doi.org/10.1016/S0168-1605(99)00007-0
  32. Mundy LM, Sahn DF, Gilmore M. Relationships between enterococcal virulence and antimicrobial resistance. Clin. Microbiol. Rev. 13: 513-522 (2000) https://doi.org/10.1128/CMR.13.4.513-522.2000
  33. Innis MA, Gelfand DH, Sninsky JJ. PCR Strategies. Academic Press, San Diego, CA, USA. pp. 249-276 (1995)
  34. Ampe F, Omar NB, Moizan C, Wacher C, Guyot JP. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl. Environ. Microb. 65: 5464-5473 (1999)
  35. Wlman AD, Maddox IS. Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol. 21: 269-274 (2003) https://doi.org/10.1016/S0167-7799(03)00107-0