Preparation, Properties and Application of Polyamide/Carbon Nanotube Nanocomposites

  • Chen, Peng (Department of Polymer Science and Engineering, Inha University) ;
  • Kim, Hun-Sik (Department of Polymer Science and Engineering, Inha University) ;
  • Jin, Hyoung-Joon (Department of Polymer Science and Engineering, Inha University)
  • Published : 2009.04.25

Abstract

The discovery of carbon nanotubes(CNTs) has opened up exciting opportunities for the development of novel materials with desirable properties. The superior mechanical properties and excellent electrical conductivity make CNTs a good filler material for composite reinforcement. However, the dispersal of CNTs in a polymer solution or melt is difficult due to their tendency to agglomerate. Many attempts have been made to fully utilize CNTs for the reinforcement of polymeric media. Therefore, different types of polymer/CNTs nanocomposites have been synthesized and investigated. This paper reviews the current progress in the preparation, properties and application of polyamide/CNTs(nylon/CNTs) nanocomposites. The effectiveness of different processing methods has increased the dispersive properties of CNTs and the amelioration of their poor interfacial bonding. Moreover, the mechanical properties are significantly enhanced even with a small amount of CNTs. This paper also discusses how reinforcement with CNTs improves the electrical thermal and optical properties of nylon/CNTs nanocomposites.

Keywords

References

  1. H. W. Kroto, J. R. Heath, S. C. O''Brien, R. F. Curl, and R. E. Smalley, Nature, 318, 162 (1985) https://doi.org/10.1038/318162a0
  2. S. Iijima, Nature, 354, 56 (1991) https://doi.org/10.1038/354056a0
  3. P. M. Ajayan, L. S. Schadler, and P. V. Braun, Nanocomposite Science and Technology, Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, Germany, 2003
  4. H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, Academic Press, San Diego, USA, 2000, vol. 5
  5. M. S. Dresselhaus, G. Dresslhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Application, Springer, Berlin, Germany, 2001
  6. X. L. Xie, Y. W. Mai, and X. P. Zhuo, Mater. Sci. Eng. R, 49, 89 (2005) https://doi.org/10.1016/j.mser.2005.04.002
  7. M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006) https://doi.org/10.1021/ma060733p
  8. Y. P. Sun, K. Fu, Y. Lin, and W. Huang, Acc. Chem. Res., 35, 1096 (2002) https://doi.org/10.1021/ar010160v
  9. C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti, Macromolecules, 35, 8825 (2002) https://doi.org/10.1021/ma020890y
  10. B. S. Kim, S. H. Bae,Y. H. Park, and J. H. Kim, Macromol. Res., 15, 357 (2007) https://doi.org/10.1007/BF03218799
  11. Y. Lin, B. Zhou, K. A. S. Fernando, P. Liu, L. F. Allard, and Y. P. Sun, Macromolecules, 36, 7199 (2003) https://doi.org/10.1021/ma0348876
  12. J. K. W. Sandler, S. Pegel, M. Cadek, F. Gojny, M. van Es, J. Lohmar, W. J. Blau, K. Schulte, A. H. Windle, and M. S. P. Shaffer, Polymer, 45, 2001 (2004) https://doi.org/10.1016/j.polymer.2004.01.023
  13. M. Endo, S. Koyama, Y. Matsuda, T. Hayashi, and Y. A. Kim, Nano Lett., 5, 101 (2005) https://doi.org/10.1021/nl0482635
  14. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon, 33, 883 (1995) https://doi.org/10.1016/0008-6223(95)00017-8
  15. S. Iijima and T. Ichihashi, Nature, 363, 603 (1993) https://doi.org/10.1038/363603a0
  16. R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, Science, 297, 787 (2002) https://doi.org/10.1126/science.1060928
  17. T. W. Ebbesen, Ann. Rev. Mater. Sci., 24, 235 (1994)
  18. T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smalley, J. Phys. Chem., 99, 10694 (1995) https://doi.org/10.1021/j100027a002
  19. W. K. Hsu, M. Terrones, J. P. Hare, H. Terrones, H. W. Kroto, and D. R. M. Walton, Chem. Phys. Lett., 262, 161 (1996) https://doi.org/10.1016/0009-2614(96)01041-X
  20. E. T. Thostenson, Z. Ren, and T.-W. Chou, Compos. Sci. Technol., 61, 1899 (2001) https://doi.org/10.1016/S0266-3538(01)00094-X
  21. J. P. Lu, Phys. Rev. Lett., 74, 1123 (1995) https://doi.org/10.1103/PhysRevLett.74.1123
  22. J. Jiang, J. Dong, and D. Y. Xing, Phys. Rev. B, 62, 13209 (2000) https://doi.org/10.1103/PhysRevB.62.13209
  23. S. Cui, R. Canet, A. Derre, M. Couzi, and P. Delhaes, Carbon, 41, 797 (2003) https://doi.org/10.1016/S0008-6223(02)00405-0
  24. O. Lourie, D. E. Cox, and H. D. Wagner, Phys. Rev. Lett., 81, 1638 (1998) https://doi.org/10.1103/PhysRevLett.81.1638
  25. R. Shvartzman-Cohen, E. Nativ-Roth, E. Baskaran, Y. Levi-Kalisman, I. Szleifer, and R. Yerushalmi, J. Am. Chem. Soc., 126, 14850 (2004) https://doi.org/10.1021/ja046377c
  26. L. A. Girifalco, M. Hodak, and R. S. Lee, Phys. Rev. B, 62, 13104 (2000) https://doi.org/10.1103/PhysRevB.62.13104
  27. H. T. Ham, Y. S. Choi, and I. J. Chung, J. Colloid Interf. Sci., 286, 216 (2005) https://doi.org/10.1016/j.jcis.2005.01.002
  28. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett., 76, 2868 (2000) https://doi.org/10.1063/1.126500
  29. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science, 280, 1253 (1998) https://doi.org/10.1126/science.280.5367.1253
  30. Y. Qin, L. Liu, J. Shi, W. Wu, J. Zhang, Z. X. Guo, Y. Li, and D. Zhu, Chem. Mater., 15, 3256 (2003) https://doi.org/10.1021/cm030219n
  31. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon, Science, 282, 95 (1998) https://doi.org/10.1126/science.282.5386.95
  32. D. Tasis, N. Tagmatarchis, V. Georgakilas, and M. Prato, Chem. Eur. J., 9, 4000 (2003) https://doi.org/10.1002/chem.200304800
  33. J. N. Coleman, S. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, Synth. Met., 102, 1174 (1999) https://doi.org/10.1016/S0379-6779(98)01065-0
  34. F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, and P. Willis, Adv. Mater., 15, 1161 (2003) https://doi.org/10.1002/adma.200304955
  35. T. M. Wu and Y. W. Lin, Polymer, 47, 3576 (2006) https://doi.org/10.1016/j.polymer.2006.03.060
  36. J. M. Tour, J. L. Bahr, and J. Yang, US 7,304,103 B2
  37. R. E. Smalley, D. T. Colbert, K. A. Smith, and M. O''Connell, US 7,264,876 B2
  38. M. J. O’'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley, Chem. Phys. Lett., 342, 265 (2001) https://doi.org/10.1016/S0009-2614(01)00490-0
  39. Z. Guo, P. J. Sadler, and S. C. Tsang, Adv. Mater., 10, 701 (1998) https://doi.org/10.1002/(SICI)1521-4095(199806)10:9<701::AID-ADMA701>3.0.CO;2-4
  40. G. R. Dieckmann, A. B. Dalton, P. A. Johnson, J. Razal, J. Chen, G. M. Giordano, E. Muñoz, I. H. Musselman, R. H. Baughman, and R. K. Draper, J. Am. Chem. Soc., 125, 1770 (2003) https://doi.org/10.1021/ja029084x
  41. V. Zorbas, A. Ortiz-Acevedo, A. B. Dalton, M. M. Yoshida, G. R. Dieckmann, R. K. Draper, R. H. Baughman, M. Jose-Yacaman, and I. H. Musselman, J. Am. Chem. Soc., 126, 7222 (2004) https://doi.org/10.1021/ja049202b
  42. H. Gao and Y. Kong, Ann. Rev. Mater. Res., 34, 123 (2004) https://doi.org/10.1146/annurev.matsci.34.040203.120402
  43. P. Petrov, F. Stassin, C. Pagnoulle, and R. J${\acute{e}}$r${\hat{o}}$me, Chem. Commun., 23, 2904 (2003)
  44. F. J. G${\acute{o}}$mez, R. J. Chen, D. Wang, R. M. Waymouth, and H. Dai, Chem. Commun., 2, 190 (2003)
  45. J. N. Barisci, M. Tahhan, G. G. Wallace, S. Badaire, T. Vaugien, M. Maugey, and P. Poulin, Adv. Funct. Mater., 14, 133 (2004) https://doi.org/10.1002/adfm.200304500
  46. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science, 280, 1253 (1998) https://doi.org/10.1126/science.280.5367.1253
  47. S. H. Lee, J. S. Park, C. M. Koo, B. K. Lim, and S. O. Kim, Macromol. Res., 16, 261 (2008) https://doi.org/10.1007/BF03218862
  48. I. C. Liu, H. M. Huang, C. Y. Chang, H. C. Tsai, C. H. Hsu, and R. C. C. Tsiang, Macromolecules, 37, 283 (2004) https://doi.org/10.1021/ma0304168
  49. K. Jiang, L. S. Schadler, R. W. Siegel, X. Zhang, H. Zhang, and M. Terrones, J. Mater. Chem., 14, 37 (2004) https://doi.org/10.1039/b310359e
  50. X. Li, W. Guan, H. Yan, and L. Huang, Mater. Chem. Phys., 88, 53 (2004) https://doi.org/10.1016/j.matchemphys.2004.05.048
  51. M. S. P. Shaffer and K. Koziol, Chem. Commun., 18, 2074 (2002)
  52. G. X. Chen, H. S. Kim, B. H. Park, and J. S. Yoon, Macromol. Chem. Phys., 208, 389 (2007) https://doi.org/10.1002/macp.200600411
  53. Z. Yao, N. Braidy, G. A. Botton, and A. Adronov, J. Am. Chem. Soc., 125, 16015 (2003) https://doi.org/10.1021/ja037564y
  54. H. Kong, C. Gao, and D. Yan, J. Am. Chem. Soc., 126, 412 (2004) https://doi.org/10.1021/ja0380493
  55. J. Fan, M. Wan, D. Zhu, B. Chang, Z. Pan, and S. Xie, J. Appl. Polym. Sci., 74, 2605 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991209)74:11<2605::AID-APP6>3.0.CO;2-R
  56. Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu, and S. Zhu, Mater. Sci. Eng. A, 271, 395 (1999) https://doi.org/10.1016/S0921-5093(99)00263-4
  57. X. Gong, J. Liu, S. Baskaran, R. D. Voise, and J. S. Young, Chem. Mater., 12, 1049 (2000) https://doi.org/10.1021/cm9906396
  58. H. Miyagawa and L. T. Drzal, Polymer, 45, 5163 (2004) https://doi.org/10.1016/j.polymer.2004.05.036
  59. R. Andrews and M. C. Weisenberger, Curr. Opin. Solid State Mater. Sci., 8, 31 (2004) https://doi.org/10.1016/j.cossms.2003.10.006
  60. S. L. Ruan, P. Gao, X. G. Yang, and T. X. Yu, Polymer, 44, 5643 (2003) https://doi.org/10.1016/S0032-3861(03)00628-1
  61. Z. Guo, P. J. Sadler, and S. C. Tsang, Adv. Mater., 10, 701 (1998) https://doi.org/10.1002/(SICI)1521-4095(199806)10:9<701::AID-ADMA701>3.0.CO;2-4
  62. B. S. Kim, K. D. Suh, and B. Kim, Macromol. Res., 16, 76 (2008) https://doi.org/10.1007/BF03218966
  63. L. Stobinski, P. Tomasik, C. Y. Lii, H. H. Chan, H. M. Lin, H. L. Liu, C. T. Kao, and K. S. Lu, Carbohydr. Polym., 51, 311 (2003) https://doi.org/10.1016/S0144-8617(02)00213-8
  64. E. Kymakis and G. A. Amaratunga, Appl. Phys. Lett., 80, 112 (2002) https://doi.org/10.1063/1.1428416
  65. W. D. Zhang, L. Shen, I. Y. Phang, and T. Liu, Macromolecules, 37, 256 (2004) https://doi.org/10.1021/ma035594f
  66. G. X. Chen, H. S. Kim, B. H. Park, and J. S. Yoon, Polymer, 47, 4760 (2006) https://doi.org/10.1016/j.polymer.2006.04.020
  67. H. S. Kim, H.-J. Jin, S. J. Myung, M. Kang, and I. J. Chin, Macromol. Rapid Commun., 27, 146 (2006) https://doi.org/10.1002/marc.200500617
  68. L. Qu, L. M. Veca, Y. Lin, A. Kitaygorodskiy, B. Chen, A. M. McCall, J. W. Connell, and Y. P. Sun, Macromolecules, 38, 10328 (2005) https://doi.org/10.1021/ma051762n
  69. H. Xia, Q. Wang, and G. Qiu, Chem. Mater., 15, 3879 (2003) https://doi.org/10.1021/cm0341890
  70. J. Gao, B. Zhao, M. E. Itkis, E. Bekyarova, H. Hu, V. Kranak, A. Yu, and R. C. Haddon, J. Am. Chem. Soc., 128, 7492 (2006) https://doi.org/10.1021/ja057484p
  71. J. Gao, M. E. Itkis, A. Yu, E. Bekyarova, B. Zhao, and R. C. Haddon, J. Am. Chem. Soc., 127, 3847 (2005) https://doi.org/10.1021/ja0446193
  72. O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, and H. Warth, Polymer, 45, 739 (2004) https://doi.org/10.1016/j.polymer.2003.12.013
  73. S. Kumar, T. D. Dang, F. E. Arnold, A. R. Bhattacharyya, B. G. Min, X. Zhang, R. A. Vaia, C. Park, W. W. Adams, R. H. Hauge, R. E. Smalley, S. Ramesh, and P. A. Willis, Macromolecules, 35, 9039 (2002) https://doi.org/10.1021/ma0205055
  74. M. V. Jose, B. W. Steinert, V. Thomas, D. R. Dean, M. A. Abdalla, G. Price, and G. M. Janowski, Polymer, 48, 1096 (2007) https://doi.org/10.1016/j.polymer.2006.12.023
  75. J. Li, L. Tong, Z. Fang, A. Gu, and Z. Xu, Polym. Degrad. Stabil., 91, 2046 (2006) https://doi.org/10.1016/j.polymdegradstab.2006.02.001
  76. H. Meng, G. X. Sui, P. F. Fang, and R. Yang, Polymer, 49, 610 (2008) https://doi.org/10.1016/j.polymer.2007.12.001
  77. M. Kang, S. J. Myung, and H.-J. Jin, Polymer, 47, 3961 (2006) https://doi.org/10.1016/j.polymer.2006.03.073
  78. H. S. Kim, B. H. Park, J. S. Yoon, and H.-J. Jin, Mater. Lett., 61, 2251 (2007) https://doi.org/10.1016/j.matlet.2006.08.057
  79. M. Kang and H.-J. Jin, Key Eng. Mater., 321, 934 (2006) https://doi.org/10.4028/www.scientific.net/KEM.321-323.934
  80. M. Moniruzzaman, J. Chattopadhyay, W. E. Billups, and K. I. Winey, Nano Lett., 7, 1178 (2007) https://doi.org/10.1021/nl062868e
  81. J. Y. Jeong, H. J. Lee, S. W. Kang, L. S. Tan, and J. B. Baek, J. Polym. Sci. Part A: Polym. Chem., 46, 6041 (2008) https://doi.org/10.1002/pola.22916
  82. C. Y. Li, L. Li, W. Cai, S. L. Kodjie, and K. K. Tenneti, Adv. Mater., 17, 1198 (2005) https://doi.org/10.1002/adma.200401977
  83. L. Li, C. Y. Li, C. Ni, L. Rong, and B. Hsiao, Polymer, 48, 3452 (2007) https://doi.org/10.1016/j.polymer.2007.04.030
  84. R. Haggenmueller, F. Du, J. E. Fischer, and K. I. Winey, Polymer, 47, 2381 (2006) https://doi.org/10.1016/j.polymer.2006.01.087
  85. H. Zou, K. Wang, Q. Zhang, and Q. Fu, Polymer, 47, 7821 (2006) https://doi.org/10.1016/j.polymer.2006.09.008
  86. Z. Mo, Q. Meng, J. Feng, H. Zhang, and D. Chen, Polym. Inter., 32, 53 (1993) https://doi.org/10.1002/pi.4990320110
  87. H. Zeng, C. Gao, Y. Wang, P. C. P. Watts, H. Kong, X. Cui, and D. Yan, Polymer, 47, 113 (2006) https://doi.org/10.1016/j.polymer.2005.11.009