Dimensional Changes of Ceromer Crown by Water Absorption

치과용 심미수복재료 세로모에서 수분흡수와 체적 변화에 관한 연구

  • Lee, Jong-Hyuk (Department of Prosthodontics, College of Dentistry, Dankook University)
  • 이종혁 (단국대학교 치과대학 치과보철학교실)
  • Published : 2009.04.30

Abstract

Statement of problem: The increasing demand for esthetic restorations has been required developing new materials for tooth colored restoration. Ceromer(Ceramic Optimized Polymer) has some advantages over porcelain, and has gained increasing popularity in restorative dentistry. However, there is little information on the dimensional changes in a clinical restoration in moist conditions. Purpose: This study examined the dimensional changes in Ceromer restorations with a clinical crown shape that were fabricated in a clinical manner. Material and methods: The crowns for the maxillary central incisor were fabricated with two Ceromers($BelleGlass^{(R)}$ and $Targis^{(R)}$) using a similar clinical restoration manufacturing technique. A total of twenty specimens were prepared and immersed in distilled water at room temperature to allow for water absorption. The weight, height and width were measured at 24, 72 and 168 hours. The accumulated ratios of the changes were calculated and evaluated using a paired t-test and an independent independent t-test. Results: The dimensions and weight increased with increasing soaking time. $Targis^{(R)}$ showed significant differences in height and weight between 24 hours and the other times(P<.05). $BelleGlass^{(R)}$ showed significant differences in width and weight between 24 hours and the other times. The two materials showed different changing patterns of the dimensions but there were no statistically significant differences between them. Conclusion: The dimensions and weight of the Ceromer restorations were changed by water absorption. The clinical crown shaped specimen showed more complicated dimensional changes than the simplified specimens.

연구목적: 치과 영역에서 환자들의 심미적인 요구가 증가하면서 자연 치아의 색조를 재현할 수 있는 수복물의 개발이 이루어졌으며, 이러한 연구의 일환으로 도재와 복합레진의 특성을 겸비한 Ceromer(Ceramic Optimized Polymer)가 개발되었다. Ceromer는 기존의 복합레진에 무기질을 고밀도로 충전하여 물리적 성질을 향상시켰다. 연구 재료 및 방법:본 실험에서는 두 종류의 Ceromer[$Targis^{(R)}$(Ivoclar-vivadent AG., Schaan, Liechtenstein), $BelleGlass^{(R)}$(Kerr Co., Orange, CA, USA)]를 이용해 레진 전장관 형태의 시편을 제작하고 증류수에 침전한 후 발생하는 체적과 중량의 변화를 관찰하였다. 결과 및 결론:두 종류의 Ceromer 모두 수중 침적 시간이 증가할수록 높이와 폭이 증가되었으며, $Targis^{(R)}$보다 $BelleGlass^{(R)}$에서 더 큰 누적변화율을 보였다. 72시간까지 급격한 증가를 보이다 이후 누적변화율의 증가는 감소하였다. 통계적 분석결과 $Targis^{(R)}$의 높이와 무게의 누적 변화량이 24시간군과 나머지군 사이에 유의한 차이를 보였으며, $BelleGlass^{(R)}$에서는 폭과 무게에서 누적 변화량이 24시간군과 나머지군 사이에 유의한 차이를 보였다(<.05). $Targis^{(R)}$$BelleGlass^{(R)}$ 두 군간의 비교에서는 높이, 폭, 무게의 변화량은 통계적으로 유의한 차이를 보이지 않았으나 변화양상은 다르게 관찰되었다.

Keywords

References

  1. Kim SJ, Shin SW, Han JS, Suh KW. Marginal fitness and marginal leakage of fiber-reinforced composite crowns depending upon luting cements. J Korean Acad Prosthodont 2000;38:618-30
  2. Chang HW, Lee JH, Lim HS, Cho IH. A study on the marginal fidelity and the fracture strength of ceromers. J Korean Acad Prosthodon 2005;43:438-52
  3. Trushkowsky RD. Ceramic optimized polyer: the nest generation of esthetic restorations-Part 1. Compend Contin Educ Dent 1997;18:1101-6
  4. Draughn RA, Bowen RL, Moffa JP. Composite materials. In: Reese JA, Valega M. editors. Restorative dental materials -an overview, vol. 1. London: FDI; 1985. p. 75-107
  5. Oysaed H, Ruyter IE. Composites for use in posterior teeth: mechanical properties tested under dry and wet conditions, J Biomed Mater Res 1986;20:261-71 https://doi.org/10.1002/jbm.820200214
  6. Calais JG, Soderholm KJ. Influence of filler type and water exposure on flexural strength of experimental composite resins. J Dent Res 1988;67:836-40 https://doi.org/10.1177/00220345880670050801
  7. Mohsen NM, Craig RG, Hydrolytic stability of silanated zirconia silica-urathane. J Oral Rehab 1995;22:213-20 https://doi.org/10.1111/j.1365-2842.1995.tb01566.x
  8. Soderholm KJ. Degradation of glass filler in experimental composites. J Dent Res 1981;60:1867-75 https://doi.org/10.1177/00220345810600110701
  9. Martin N, Jedynakiewicz NM, Fisher AC. Hygroscopic expansion and solubility of composite restoratives. Dent Materials 2003;19:77-86 https://doi.org/10.1016/S0109-5641(02)00015-5
  10. McCabe JF, Rusby S. Water absorption, dimensional change and radial pressure in resin matrix dental restorative materials. Biomaterials 2004;25:4001-7 https://doi.org/10.1016/j.biomaterials.2003.10.088
  11. van Noort R. Chapter 2.2 Resin composites and polyacidmodified resin composites. Introduction to dental materials. 2nd ed, Mosby, Edinburgh 2002, p,96-123
  12. Hirasawa T, Hirano S, Hirabayashi S, Harashima I, Aizawa M. Initial dimensional change of composites in dry and wet conditions. J Dent Res 1983;62:28-31 https://doi.org/10.1177/00220345830620010701
  13. Musanje L, Barvell BW. Aspects of water sorption from the air, water and artificial saliva in resin composite restorative materials. Dental Materials 2003;19:414-22 https://doi.org/10.1016/S0109-5641(02)00085-4
  14. Segura A, Donly KJ. In vitro posterior composite polymerization recovery following hygroscopic expansion. J Oral Rehab 1993;20:495-9 https://doi.org/10.1111/j.1365-2842.1993.tb01636.x
  15. Gohring TN, Gallo L, Luthy H. Effect of water storage, thermocycling, the incorporation and site of placement of glass-fibers on the flexural strength of veneering composite. Dent Mater 2005;21:761-72 https://doi.org/10.1016/j.dental.2005.01.013
  16. Feilzer AJ, de Gee AJ, Davidson CL. Relaxation of polymerization recontraction shear stress by hygroscopic expansion. J Dent Res 1990;69:36-9 https://doi.org/10.1177/00220345900690010501
  17. Feilzer AJ, Kakaboura AI, de Gee AJ, Davidson CL. The influence of water sorption on the development of setting shrinkage stress in traditional and resin-modified glass ionomer cements. Dent Mater 1995;11:186-90 https://doi.org/10.1016/0109-5641(95)80016-6
  18. Keyf F, Yalcin F. The weight change of various light-cured restorative Materials stored in water. J Contemp Dent Pract 2005;6:72-9