암석파괴역학에 의한 3차원 절리면의 진행성 파괴 모델

A Three-Dimensional Progressive Failure Model for Joints Considering Fracture Mechanics and Subcritical Crack Growth in Rock

  • 발행 : 2009.04.30

초록

암석파괴역학과 파괴인성(rock fracture toughness) 이하의 응력확대계수(stress intensity factor)에서 균열이 성장하는 현상을 이용하여 암석 절리면의 비선형 강도특성과, 시간의 경과에 따라 파괴가 진행되는 특성을 고려한 수치해석용 3차원 절리면 요소를 개발하였다. 이 절리면 요소를 사용하여 암석 절리면 전단시험을 수치해석으로 모사한 결과, 전단응력이 증가하고 시간이 경과함에 따라 절리면 사이에 연결된 절리면 내 접점(asperity in joint)에서 암석의 파괴인성보다 응력확대계수가 작음에도 불구하고 균열이 발생하였고 시간이 경과하면서 균열이 성장, 절리면 내 접점이 파괴되었다. 이와 같이 각각의 절리면 내 접점의 파괴에 따라 절리면의 강도는 감소하고, 절리면의 전단응력은 응력경화와 응력연화 후 잔류응력에 도달하는 비선형거동을 보이면서 시간의 경과에 따라 점진적으로 파괴되었다.

A three dimensional rock joint element was developed considering fracture mechanics and subcritical crack growth to simulate non-linear behavior and the progressive failure of rock joints. Using this 3-D joint element, joint shear tests of rock discontinuities were simulated by a numerical method. The asperities on the joint surface began to fail at stress levels lower than the rock fracture toughness and continued progressively due to subcritical crack growth. As a result of progressive failing in each and every asperity, the joint showed non-linear stress-time behavior including stress hardening/softening and the reaching of a residual stress.

키워드

참고문헌

  1. Atkinson BK., 1984, Subcritical crack growth in geological materials. J Geophys Res;89(B6): 4077-4114 https://doi.org/10.1029/JB089iB06p04077
  2. Atkinson BK., 1987, Fracture mechanics of rock. London :Acedemic Press
  3. Barton N., 1973, Review of a new shear strength criterion for rock joints. Engr Geol.;7: 287-332 https://doi.org/10.1016/0013-7952(73)90013-6
  4. Barton N, Bandis S., 1990, Review of predictive capabilities of JRC-JCS model in engineering practice. In: Barton N, Stephanson O, editors, Rock Joints, proceeding of the International symposium on rock joints, Loen, Norway, Rotterdam: Balkema; 603-610
  5. Charles R.J., 1958, Static fatigue of glass. J.Appl phys.: 29: 1549-1560 https://doi.org/10.1063/1.1722991
  6. Eberhardt E, Stead D., Cogan J, Willenberg H., 2002, An integrated numerical analysis approach to the Randa rockslide. First European conference on landslides, 24-26 June, Prague, Czech Republic; 255-262
  7. Itasca, 2007, 3-dimensional distinct element code (3DEC) ver.4.1. Minneapolis:Itasca Consulting Group, Inc
  8. J. M. Kemeny, R. M. Hagaman, 2002, An asperity model to simulate rupture along heterogeneous fault surfaces, Pageoph., Vol. 138, No. 4, 549-567 https://doi.org/10.1007/BF00876338
  9. J. Kemeny, 2003, The time-dependent reduction of sliding cohesion due to rock bridges along discontinuities: A fracture mechnics approach, Rock mechanics Rock engng.:36/1: 27-38
  10. J. Kemeny, 2005, Time-dependent drift degradation due to progressive failure of rock bridges along discontinuities Int J Rock Mech Min Sci.:42: 35-46 https://doi.org/10.1016/j.ijrmms.2004.07.001
  11. Kemeny JM., 1991, A model for non-linear rock deformation under compression due to sub-critical crack growth. Int J Rock Mech Min Sci.;28(6): 459-467 https://doi.org/10.1016/0148-9062(91)91121-7
  12. Michalske, T. A., S.W. Freiman, 1982, A molecular interpretation of stress corrosion in silica, Nature, 295, 511-512 https://doi.org/10.1038/295511a0
  13. Ojala IO, Ngwenya BT, Main IG, Elphick SC., 2003, Correlation of microsesmic and chemical properties of brittle deformation in Locharbriggs sandstone. J Geophys Res;108(B5):2268 doi:10.1029/2002JB002277
  14. Rooke D, Cartwright D., 1976, Compendium of stress intensity factors. London HMSO. 330
  15. Sjoberg J., 1996, Large scale slope stability in open pit mining-a review Technical Report 1996.10T, Lulea University of Technology, Division of Rock Mechanics, Lulea, Sweden; 229