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회전행렬과 쿼터니언에 근거한 비행체 제어기 설계

Controller Design for Aircraft Based on Rotational Matrix 
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Abstract In this paper, we present a linear controller for attitude of aircraft. We use a 
rotational matrix in one approach and a quaternion in the other approach. We also find some 
interesting mathematical properties concerning a symmetric rotational matrix and we use these 
properties to analyze the stability of the proposed control law. We find that the quaternion 
approach is better than rotational matrix approach because there exists no singular region 
problem in quaternion approach. On the other hand, singular region problem may happens in 
rotational matrix approach. The controller structure of the quaternion is also very simple 
compared with the one proposed by using a rotational matrix approach. We make use Matlab 
Simulink to simulate and illustrate the theoretical claims. The graphic animation program is 
developed based on Open-GL for the computer simulation of the proposed control algorithm.
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1. Introduction1)

Many papers has been published for the attitude 
control of fight vehicles such as glider and helicopter. 
We also proposed a new control strategy for attitude 
control of aircraft under the assumption that all the parts 
are rigid[1]. In this paper, we address one solution for this 
control problem, in particular, the task of forcing the 
attitude of a rigid body fight vehicle to asymptotically 
track a desired reference model. We focus only on the 
regulator problem because of its easiness compared with 
model following problem. In real system in aircraft, we 
use the GPS and gyro as a sensor for measuring the 
location and angular velocity. There has been many 
research[2, 8] for reducing the bias error by using 
least-squares approach or Kalman filter even thoughthis 
filtering strategy is originally derived based on the 
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assumption that the dynamics of control object are 
expressed or approximated by linear system disturbed by 
random noise the characteristic of which we know such 
as mean and variation etc. There are been also many 
research works in which the rotational motions are 
described by using quaternion. R.M. Sanner[3, 4] and T.I 
Fossen[5, 6, 7, 10] also proposed a nonlinear controller and 
observer based on quaternion kinematics. Recently there 
has also been many research to apply adaptive observer 
and control theory to aircraft[9]. S. Di. Gennaro[11] 
proposed error modeling based on quaternion to describe 
the dynamics of a flexible spacecraft. There has been 
also some research works in which a quaternion feedback 
control was used based on the Euler angle[12, 13].

Here, in order to make a rigid fight object to track a 
reference attitude, we propose linear control law for 
angular velocity based not only on rotational matrix 
approach but also on quaternion approach. We also 
review briefly on the operations of quaternion such as 
product, inverse and its kinematics etc. The graphic 
animation program is developed based on Open-GL for 
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the computer simulation of the proposed control 
algorithm. The original graphicdata for helicopter are 
derived by using 3ds Max software. This simulation 
program is now developing in our laboratory and will be 
used for the tracking and stabilization of helicopter with 
the considering the robustness for the wind gust, dynamic 
uncertainty and etc. 

2. Mathematical Preliminary

In this section, we will first present basic mathematical 
description of aircraft attitude in terms of quaternion. 
Then the error model of the attitude is described based 
on the quaternion. 

For simplicity we refer to orthogonal matrices with 
determinant +1 as rotation matrices and we refer the set 
of all 3x3 rotation matrices by the symbol SO(3).We also 
denote the set of all 3x3 skew symmetric matrices by 
SS(3) The attitude of a spacecraft can be represented by 
a quaternion, consisting of a unit vector e, known as the 
Euler axis and rotation angle φ about this axis, so that
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where q is the quaternion, partitioned into a vector 
part, ε and a scalar part, η. In the mathematical 
description of spacecraft attitude, the quaternion 
represents the rotation of spacecraft body coordinate 
system in respect to the inertial coordinate system. Note 
that the quaternion discussed in here is an element of the 
set Q of unit quaternions defined as
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The rotation matrix corresponding to a quaternion is 
given as
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where I is an 3x3 identity matrix and S(ε) is a 3x3 

skew symmetric matrix defined as
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An important property of S(ε) is that for any vector
p = [px, py, pz]T

ppS ×= εε )( (5)

Suppose that a rotational matrix 
l
bR is time varying, 

then the time derivative 
l
bR& of 

l
bR is given by
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In here, we use the following mathematical fact that

)()( εε RSRRS T = (7)

where R is any rotational matrix.

3. Controller Design: Rotational Matrix 

Approach

3.1 Control Law and Stability Analysis

We state the invariant property of the rotational matrix 
in the following theorem. 

Theorem 1. Let S(t) be sew symmetric matrix. Then the 
solution matrix R(t) such that

)()( tRtSR =& (8)

satisfies the following property of the rotational matrix 

for any given )3()0( SOR ∈ .

ItRtR T =)()( (9)

Proof: We can derive the solution matrix R(t) as follows.
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From the fact that S is skew symmetric matrix, we 

obtain following mathematical property

 

SSSS TT = (11)

and

Ieee
dSSdSdS TT
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Therefore, we obtain 

IRRtRtR TT == )0()(0()()(( (13) 

Now we propose a stable control law as a theorem.

Theorem 2. For a dynamic equation of a helicopter 
given as equation (8) if we select the control law given as

))()(()( 2332 tRtRkt xx −−=ω

))()(()( 3113 tRtRkt yy −−=ω (14)
))()(()( 1221 tRtRkt zz −−=ω

for any positive constants kx, ky, kz, then limt→∞R(t)=MsI 
where Ms is a symmetric rotational matrix. 
In the above equation, ωx(t), ωy(t), and ωz(t)are the 
angular velocities of the helicopter represented by 
projections on the axes of the body attached coordinate 
system.

Proof: Let us choose the performance index J as follows.

TItRItRtrJ ))()()(( −−= (15)

The time derivative of J can be expressed as

)]()([(2]]))()()([([ tRtStrItRItR
dt
dtrJ T −=−−=& (16)

We obtain time derivative of J as follows.

))()(()( 2332 tRtRtJ x −= ω&

))()(( 3113 tRtRy −+ω (17)
))()(( 1221 tRtRz −+ω

Therefore if we choose control law (14), we obtain

2
2332 ))()(()( tRtRktJ x −−=&

2
3113 ))()(( tRtRk y −− (18)

2
1221 ))()(( tRtRk z −−

and we can see that R(t)converges to symmetric rotation 
matrix one of which is identity matrix which we want. Q.E.D

Theorem 3. There exist only 8 kinds of rotational 
matrix that is symmetric and 4 kinds of them are in 
SO(3) and one of them is I3x3.

Proof: From the basic knowledge of linear algebra, we 
already know that symmetric matrix has only real 
eigenvalues. We also know that the absolute values of 
rotational matrix's eigenvalue are all equal to 1. 
Therefore the eigenvalue set S1of symmetric rotational 
matrix is given as

)}1,1,1{(1 ±±±=S

From the definition of SO(3)in section 2, it is 
impossible for a symmetric rotational matrix has odd 
number of eigenvalue -1. The possible combination of 
eigenvalue of the symmetric rotation matrices with 
determinant are as follow.

)}1,1,1(),1,1,1(),1,1,1(),1,1,1{( −−−−−−

The common property of the symmetric rotational 
matrix is that the sum of the eigenvalue is either 3 or  
-1. I3x3 is the only symmetric rotational matrix whose 
sum of eigenvalues is 3 and we use this fact to derive 
the stable control law in this section.

Remark 1. From the above theorem 2,
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Case1 Initial Final
(R11, R12, R13) (-0.50, -0.86, +0.00)  ( 1, 0, 0 )

(R21, R22, R23) (+0.86, -0.50, +0.00 )  ( 0, 1, 0 )

(R31, R32, R33) (+0.00, +0.00, +1.00)  ( 0, 0, 1 )

(a) Attitude of small

Case1 Initial Final
(R11, R12, R13) (+0.75, - 0.50, +0.43) ( 1, 0, 0 )

(R21, R22, R23) (+0.43,+0.86, +0.25 ) ( 0, 1, 0 )

(R31, R32, R33) (-0.50, +0.00, +0.86) ( 0, 0, 1 )

(b) Attitude of large deviation

Case1 Initial Final
(R11, R12, R13) (+0.77, +0.64, +0.00) (+0.77, +0.64, +0.00)

(R21, R22, R23) (+0.64, -0.77, +0.00 ) (+0.64, -0.77, +0.00 )

(R31, R32, R33) (+0.00, +0.00, -1.00) (+0.00, +0.00, -1.00)

(c) Attitude of deviation in Singular Region

Table 1. Initial and final value of rotational matrix
))()()((

2
1

332211 tRtRtRJ &&&& ++−=  and from this we know 

that the fact Ĵ≤0 means that the summation of the 
eigenvalues are increasing for all time. So we can guess 
that if we set the initial condition of rotational matrix 
satisfy the following equation

 3)0()0()0((1 332211 ≤++<− RRR )19(

R(t) converges to I3x3.
From the above theorem 2, we can not guarantee that 

rotation matrix R(t) converse to identity matrix, because 
there are 4 symmetric matrices in SO(3). But if we can 
restrict the initial condition of the rotational matrix in a 
certain domain, we can find a global stable control law 
and so we now propose a global stable control law as a 
theorem.

Theorem 4. If we use the same a control law proposed 
in theorem 2 and initial condition of rotational matrix 
satisfies equation(19) then limt→∞R(t) = I.

Proof: From the theorem 2, we know that the R(t) 
converges to symmetric matrix. We also know by using 
the fact of remark 1 that the only symmetric rotational 
matrix which can be converged to is I3x3 and this proves 
the theorem.

Now we try and discuss the same problem with the 
mathematical tool of quaternion in the next section.

3.2 Simulation

We use the Matlab Simulink to simulate the control 
law proposed in the previous section. We consider two 
case of initial conditions of rotational matrix as shown in 
table 1. We set the control parameters kx, ky, kz as 1, 1, 
1 respectively in both case and the simulation time is set 
5 seconds. Initial conditions of case 1 and case 2 are 
obtained by Rz,120 and Rz,30 Ry,30 Rx,0 respectively where 
Rz,ψ denote the rotational matrix which we obtain when 
we rotate inertial coordinate system ψ degree about z 
axis. We observe that the rotational matrix converges to 
the I3x3 in both case. We emphasize that the sum of the 
eigenvalue of the initial rotational matrix in both case is 
large than -1. The wave forms of each element of the 

rotational matrix and attitude of the helicopter 
corresponding to the kinematic parameters are shown in 
Fig.1 and Fig.2 for case 1 and case 2, respectively. 

We observe from the computer simulation that there 
exist some domain of initial condition for rotational 
matrix where eigenvalue of the initial rotational matrix 
has 1,-1,-1 and we can't guarantee the stability when 
helicopter is located in this region initially. So we call 
this region as “Singular Region” of the proposed control 
law. We simulate this case as shown in case 3, where we 
obtain the initial rotational matrix as follow.

T
zz RdiagRR 20,20, )1,1,1()0( −−=

From this discussion, we can see that if the initial 
condition of rotational matrix is belong to Rs defined 
bellow, we can not guarantee the stability but the size of 
this space is not so large compared to the whole space of 
rotational space.

321 MMMRs ∪∪= (20)
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(a) Wave form of rotational matrix : case 2.

b) Kinematic parameter of the initial attitude: case2.

(c) Kinematic parameter of the final attitude: case2.

Figure 2. Control based on rotational matrix approach.

(a) Wave form of rotational matrix : case 1.

(b) Kinematic parameter of the initial attitude: case 1.

(c) Kinematic parameter of the final attitude: case 1.

Figure 1. Control based on rotational matrix approach.(case 1.)
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where
TRRdiagM )1,1,1(1 −−=

TRRdiagM )1,1,1(2 −−=

TRRdiagM )1,1,1(3 −−=

R is any rotational matrix and M1, M2, M3 are initial 
conditions of symmetric rotational matrix in the Singular 
Region.

4. Controller Design: Quaternion Approach

4.1 Control Law and Stability Analysis

In this section, we review research works done on the 
aircraft attitude control base on quaternion. Quaternion 
differentiation's formula can be represented as 
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where 
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In the above equation, ⊗  denotes quaternion product[4, 14] 
operator, Ω(t) is the angular velocity represented by 
projections on the axes of inertial coordinate system and 
ω(t) is same angular velocity represented by projections 
on the axes of the body attached coordinate system. The 
above equation for the quaternion can be expressed as

)())((
2
1)( ttqQ

e
tq ω

η
=⎥

⎦

⎤
⎢
⎣

⎡
=

&

&
&

(22)

where

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−
+

= TT t
tqQ

t
tSIt

tqQ
)(
))((

)(
))(()(

))(( 1

εε
εη

In here, Q1(q(t)) = η(t)I + S(ε(t)) by inspection. The 

relative orientation error q~ between coordinates frames 
represented by qd(t) and q(t) is defined and computed as
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where qd is a desired target attitude represented by 
quaternion. The control object is to make spacecraft be 
aligned with the desired attitude represented by quaternion 

qd , that is , to make that 1~,0||~|| ±== ηε .
The dynamic equation for the relative orientation error 

q~ is given as

ω~)~(
2
1)(~ qQtq =&

(24)

where

dqR ωωω )~(~ −=

and )~(qR is rotational matrix corresponding to a 

quaternion error q~ , ωd is the desired angular velocity for 

a desired quaternion qd. In the above mathematical 

derivation we use the following facts concerning 

quaternion

1~~ 1 =⊗ −qq

11
1

~~~~
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dt
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dt
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Therefore the essential control object is to find ω(t) 
that stabilizes above error dynamics for quaternion and 

makes that 1~,0||~|| ±== ηε . In this paper, we propose 
control law in case of regulator problem, that is to 
consider only the case when the desired quaternion qd(t) 
is a constant quaternion (0, 0, 0, 1).

Therefore the control problem in this case is to find ω(t) 
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(a) Trajectories of quaternion

(b) Coordinate reference frames of model helicopter

Figure 3. Control based on quaternion approach.

such that )()(~ tqtq =  converge to a constant quaternion 
(0, 0, 0, 1). In near future, we will tackle the general 
model following problem where the desired quaternion is 
obtained by desired angular velocity ωd(t)from the model 
such as follow.

)())((
2
1)( ttqQtq ddd ω=&

We now propose control law based on the quaternion 
as a following theorem and we can see that the control 
law is very simple compared with the one proposed by 
using a rotational matrix approach.

Theorem 5. For the kinematics of quaternion given by 
equation (22), if we select the control law given as 

)()))(1())((()( 1 tIttqQkt T εηω ω −+−=

)()))((( tItSk T εεω +−=

)(tk εω−= (25)

for any positive constant kω, then limt→∞ q(t)=(0,0,0,1) 
Proof : Let us choose the performance index J as 
follows.

2))(1()()( tttJ T ηεε −+= (26)

We obtain time derivative of J as follows.

)())(1(22)( tttJ T ηηεε &&& −−=

ωεηε ))1(( 1
TT Q −+= (27)

Therefore if we apply the control law (25), we obtain

[ ][ ] 0)1()1(2)( 11 ≤−−−−−= εηηε IQIQtJ TT& (28)
From the property of the quaternion kinematics, that
is Q1 = ηI + S(ε), we obtain

[ ][ ]εεεεω
TT SISIktJ )()()( ++−=&

[ ] 0)()( ≤+−= εεεεω
TT SSIk (29)

We can see that the matrix I + S(ε)S(ε)T is positive 
definite matrix for any ε and therefore we can guarantee 
that ε(t) and η converge to zero vector and constant 1 as 
time goes to infinity. This prove the theorem. Q.E.D

4.2 Simulation

We set the control parameter kω to 5 and simulation 
time is set to 5. We obtain set the initial quaternion q(0) 
= (0.1619, 0.0754, 0.3830, 0.9063) by choosing e and η 
as (0.383, 0.1786, 0.9063) and 25 degree. We observe 
that the quaternion q(t) converges to (0,0,0,1) within in 
2.5 second and this fact verifies the validity of the 
proposed control law based on quaternion approach. The 
most advantage of this control law based on quaternion 
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Figure 4. Animation graphic for the proposed control.

compared with the one based on rotational matrix is that 
it guarantees the global stability for any initial attitude of 
craft. The trajectories of each element of quaternion q(t) 
and coordinate reference frames of model helicopterare 
shown in figure Fig3. The following figure Fig4 is a 
graphic animation program based on OPEN-GL program 
for the computer simulation of the proposed control 
algorithm. The original graphic data for helicopter are 
derived by using 3ds Max software

5. Conclusion

A linear controllers designed based on both rotational 
matrix and quaternion are presented for aircraft attitude 
application. We also analyze the stability in each case 
by using Lyapunov-like method prove the global 
stability of the proposed linear controller. In this paper, 
we also review and comment onthe error dynamic for 
the quaternion approach for helping those who are 
interested in the quaternion for aircraft or robotics. From 
the results of computer simulation, we can see that the 
proposed control algorithm can be applied to solve the 
self stabilizing problem such as hovering problem in 
helicopter etc.

In near future, we will try to tackle for the robust 
control problem even in the presence of noise in sensor 
such as gyro, GPS etc.
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