배열 와전류 프로브의 FBH 결함 크기 변화에 따른 신호 해석

Signal Analysis of Eddy Current Array Probe According to Size Variation of FBH Defects

  • Kim, Ji-Ho (Department of Electrical Engineering, Soongsil University) ;
  • Lim, Geon-Gyu (Department of Electrical Engineering, Soongsil University) ;
  • Lee, Hyang-Beom (Department of Electrical Engineering, Soongsil University)
  • 발행 : 2009.04.30

초록

본 논문에서는 전자기 유한요소 해석을 통하여 원전 증기발생기(SG, steam generator) 세관의 결함 크기 변화에 따른 배열 와전류 프로브의 와전류탐상 특성을 해석하였다. 프로브의 전자기적 특성을 해석하기 위하여 맥스웰 방정식을 이용하여 지배방정식을 유도하였고, 이를 3차원 전자기 유한요소법을 이용하여 문제를 해석하였다. 해석을 위해 선정한 결함은 평저공(FBH, flat bottomed hole) 결함을 선정하였다. FBH결함에 대해 결함의 위치를 관의 외부표면에 존재하게 하고 결함의 깊이는 세관 두께의 20%, 40%, 60%, 80%, 100%로 하였다. 또한 결함의 크기변화 및 시험주파수를 100 kHz, 300 kHz, 400 kHz로 변화시켜 해석하였다. 해석 대상으로는 원자력발전소 증기발생기 세관으로 사용되고 있는 Inconel 600 도체관을 사용하였다. 본 논문을 통하여 결함형상, 깊이 및 크기, 시험주파수의 변화에 따른 탐상신호의 변화를 확인할 수 있었다. 본 논문의 결과는 배열 와전류 프로브의 와전류탐상 신호 평가시 도움이 될 것이다.

In this paper, the signal analysis of eddy current array probe was performed to analyze the electromagnetic characteristics with the variation of FBH(flat bottomed hole) defects size on steam generator tube in NPP(nuclear power plants) using the electromagnetic finite element method. To obtain the electromagnetic characteristic of probes, the governing equation was derived from Maxwell's equations, and the individual problem was analyzed by using the 3-dimensional finite element method. For the simulation FBH defects were used. The depth of FBH defects were 20%, 40%, 60%, 80% and 100% of steam generator(SG) tube thickness, and it was assumed that the defects were located on the tube outside. And the operation frequencies of 100 kHz, 300 kHz and 400 kHz were used. Material of specimen was Inconel 600 which is usually used for SG tubes in NPP. The signal difference could be observed according to the size variation of depth of FBH defects and operation frequencies. The results in this paper can be helpful when the ECT(eddy current testing) signals from EC array probe are evaluated and analyzed.

키워드

참고문헌

  1. Young-Kil Shin, 'Design of encircling remote field eddy-current probe,' IEEE Transactions on Magnetics, Vol. 38, No. 2, March (2002) https://doi.org/10.1109/20.996325
  2. Hyang-beom Lee, 'Eddy current signal analysis for transmit receive pancake coil on ECT array probe,' Journal of the Korean Society for Nondestructive Testing, Vol. 26, No. 1, pp. 25-29, February, (2006)
  3. L. S. Obrutsky, V. S. Cecco, S. P. Sullivan and D. Humphrey, 'Transmit-receive eddy current probes for circumferential cracks in heat exchanger tubes,' Materials Evaluation, Vol. 54, No 1, pp. 93-98. The American Society for Nondestructive Testing, Inc., January (1996)
  4. S. P. Sullivan, V. S. Cecco, L. S. Obrutsky, D. Humphrey, S. P. Smith and K. A. Emde, 'Computer modeling of eddy current transmitreceive probes for tube inspection,' Review of Progress in Quantitative Nondestructive Evaluation, Vol. 17, pp. 283-289. Ed., D. O. Thompson and D. E. Chimenti, Plenum Press, New York, (1998)
  5. O. Biro and K. Preis, 'Finite element alalysis of 3-D eddy currents,' IEEE Transactions on Magnetics, Vol. 26, No. 2, pp. 418-423, (1990) https://doi.org/10.1109/20.106343
  6. 이향범, '3차원 와전류 문제의 유한요소해석에서 쿨롱 게이지 조건과 전류연속조건의 영향', 대한전기학회논문지, 54B (10), pp. 483-491, (2005)
  7. Covers Inconel 600 (tm) Super Alloy in Pipe and Tube, ASTM Code, ASTM B163, No. 110