Fenitrothion 분해미생물 Bacillus sphaericus NFo1의 동정 및 분해 최적조건

Identification and Cultural Optimization of the Fenitrothion-degrading Microorganism, Bacillus sphaericus NFo1

  • 최혁 (대구광역시 보건환경연구원) ;
  • 이영득 (대구대학교 생명환경학부) ;
  • 강선철 (대구대학교 생명공학과)
  • Choi, Hyuek (Deagu Research Institute of Public Health and Environment) ;
  • Lee, Young-Deuk (Division of Life and Environmental Science, Daegu University) ;
  • Kang, Sun-Chul (Department of Biotechnology, Daegu University)
  • 발행 : 2009.03.31

초록

유기인계 살충제인 fenirothion에 의하여 생성되는 폐기물과 폐수를 생물적 방법으로 처리하는 방법을 찾기 위하여 fenitrothion 분해미생물을 이용하는 연구를 수행하였다. 이 미생물은 fenitrothion을 함유하는 NB 선택배지를 이용하여 분리되었으며, Gram(+), 막대형, 포자형성 등의 형태적, 생화학적 특징들에 근거하여 Bacillus sphaericus NFo1으로 동정되었다. NB 배지에서 fenitrothion을 분해하는 최적 배양조건 혹은 농약 분해 조건을 결정하는 연구를 수행한 결과 최적 배양온도, 초기 pH, 균체 접종량이 각각 $35^{\circ}C$, 7.5, $OD_{660}$ 값이 1.5인 균체량으로 결정되었다. 이상의 최적 분해조건에서 fenitrothion은 5일 이내에 200mg/L의 고농도 배양에서도 90% 이상이 분해됨을 확인하였다.

A study was carried out to find out the methodology of biological treatment for wastes and wastewater caused by an organophosporus insecticide, fenitrothion, using fenitrothion-degrading microorganism. A fenitrothion-degrading microorganism was isolated by using a selective nutrient broth (NB) medium including fenitrothion, and identified to Bacillus sphaericus NFol based on its morphological and biochemical characteristics. Further, investigation was processed to determine the optimal culture conditions degrading fenitrothion in NB medium by using the NFo1 strain. As results, the cultural conditions determined for temperature, initial pH and inoculum for the optimum growth of the strain and degradation of fenitrothion, which has a exact co-relationship between both of them, were $35^{\circ}C$, 7.5 and 1.5 at $OD_{660}$ value, respectively. In this conditions, fenitrothion could be degraded within 5 days over 90% at the high concentrations of fenitrothion, upto 200 mg/L.

키워드

참고문헌

  1. Adhya, T. K., B. Sudhakar and N. Sethunathan (1981) Fate of fenitrothion, methyl parathion and parathion in anoxic sulfur-containing soil systems. Pestic. Biochem. Physiol. 16:14-20 https://doi.org/10.1016/0048-3575(81)90067-5
  2. Alonso, J. L., C. Sabater, M. J. Ibanez, I. Amoros, M. S. Botella and J. Carrasco (1997) Fenitrothion and 3-methyl-4-nitrophenol degradation by two bacteria in natural waters under laboratory conditions. J. Environ. Sci. Health. 32(3):799-812 https://doi.org/10.1080/10934529709376577
  3. Arthurs, Steven, Matthew B. Thomas and Juergen Langewald (2003) Field observations of the effects of fenitrothion and Metarhizium anisopliae var. acridum on non-target ground dwelling arthropods in the Sahel. Biological Control 26(3):333-340 https://doi.org/10.1016/S1049-9644(02)00166-4
  4. Baarschers, W. H., J. Elvish and S. P. Ryan (1983) Adsorption of fenitrothion and 3-methyl-4-nitrophenol on soils and sediment. Bull. Environ. Contam. Toxicol. 30:621-627 https://doi.org/10.1007/BF01610184
  5. Baarschers, W. H. and H. S. Heitland (1986) Biodegradation of fenitrothion and fenitrooxon by the Fungus Trichoderma viride. J. Agric. Food Chem. 34:707 -709 https://doi.org/10.1021/jf00070a029
  6. Bruhn, C., H. Lenke and H. J. Knackmuss (1987) Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl. Environ. Microbiol. 53(1):208-210
  7. Cheng, H. H. (1990) Pesticides in the soil environment : processes impacts and modeling. Soil Science Society of America:429-466
  8. Farghaly, M. and S. El-Maghraby (2008) Toxicological evaluation and bioavailability of $^{14}C$-fenitrothion bound residues on soybeans towards experimental animals. Food and Chem. Toxicol. 46(9):3111-3115 https://doi.org/10.1016/j.fct.2008.06.015
  9. Hayes, W. J. and E. R. Laws (1991) Handbook of pesticide toxicology. Academic Press, Inc
  10. Hill I. R. and S. J. L Wright (1978) Pesticide microbiogy. Academic Press. London: 79-136
  11. MacRae, I. C. (1989) Microbial metabolism of pesticides and structurally related compounds. Rev. Environ. Contam. Toxico. 109:1-88
  12. Ozaki, M. and S. Kuwatsuka (1986) Reproductive degradation of the herbicide isouron and its related compounds by Pseudomonas putida. J. Pesticide Sci. 11(3):427-432 https://doi.org/10.1584/jpestics.11.427
  13. Sato, Y. (1992) Degradation of fenitrothion by bacteria isolated from forest soil. J. Jpn. For. Soc. 74(6):482-487
  14. Schoen, S. R. (1987) The effects of various soil factors and amendments on the degradation of pesticide mixtures. J. Environ. Sci. Health 22(3):347-377 https://doi.org/10.1080/03601238709372561
  15. Worthing, C. R. (1991) The pesticide manual. ninth edition, The British Crop Protection Council
  16. Wright, J. A., M. W. Hermonat and R. G. Hards (1982) A degradation product of fenitrothion, 3-methyl-4-nitrophenol, is an inhibitor of mammalian ribonucleotide reductase. Bull. Environ. Contam. Toxicol. 28:480-483 https://doi.org/10.1007/BF01607715
  17. 김미림, 박찬성, 최경호 (1995) 제초제 paraquat의 미생물 생육저해작용. 한국농화학회지 38(4):283-288
  18. 김희권, 윤봉기, 박인진, 서용택(1996) 제초제 quizalofop-ethyl의 토양중 행방. 한국환경농학회지 15(4):488-493
  19. 문영희, 김윤태, 김영석, 한수곤 (1993) 토양 중 살충제 ethoprophos의 분해성 및 이동성의 측정과 예측에 관한 모델 연구. 한국환경농학회지 12(3):209-218
  20. 문영희, 양항승 (1990) 실외조건의 수토양 중 fenitrothion, IBP, butachlor의 소실. 한국환경농학회지 9(1):9-14
  21. 박연준 (1996) HBC법에 의한 생활오수처리의 특성. 영남대학교 환경대학원 석사학위논문
  22. 박연희, 조성은, 이우상, 조도현 (1992) 활성오니에서 분리한 pentachlorophenol 내성균주의 pentachlorophenol제거에 관한 연구. 한국농화학회지 35(4):242-247
  23. 박창규, 한대성, 허장현 (1984) 낙동강 주요 환경 구성분 중 유기인계 농약잔류분. 한국환경농학회지 3(1):26-44
  24. 백수봉, 양창술, 오연선 (1994) 미생물을 이용한 농약잔류 분석법 개발. 한국식물병리학회지 10(4):297-304
  25. 이성환, 홍종욱 (1987) 개정 농약학. 향문사
  26. 이숙희, 홍성용, 하지홍 (1994) Phenol을 이용하는 균주에 의한 trichloroethylene 분해. 산업미생물학회지 22(2):203-209
  27. 임경택, 배도용, 신남철 (1996) 지구환경과학. 동아기술
  28. 최혁, 김복진, 배도용, 이영득, 강선철 (1998) 유기인계 살충제 fenitrothion 분해미생물 탐색. 한국환경농학회지 17(3):279-285
  29. 한성수, 박필재, 정동훈, 임효섭 (1996) 수종 토양세균에 의한 살균제 myclobutanil의 분해력. 한국환경농학회지 15(1):25-36
  30. 한성수, 최찬규, 정재훈, 백승화 (1995) 환경차이에 따른 밭토양 중살균제 myclobutanil의 잔류 및 토양미생물상 변화. 한국환경농학회지 14(1):28-44