The Application of Chiral HPLC Columns for Enantiomer Separation of Chiral Drugs

Chiral Drugs의 광학분할을 위한 HPLC Column의 응용

  • 이원재 (조선대학교 약학대학 약학과)
  • Published : 2009.04.30

Abstract

In terms of chiral issue, two enantiomers of chiral drugs often differ significantly in their pharmacological, toxicological and pharmacokinetic profile. Chiral switches of racemic drugs have been redeveloped as single enantiomers. Several chiral resolution techniques in chirotechnology are introduced and the most used chiral HPLC chromatographic method among several chiral analysis techniques is described with its several advantages. Several types of chiral HPLC columns derived from their chiral selectors are discussed with their property and applications for enantiomer separation.

Keywords

References

  1. Francotte, E. and Lindner, W. (Ed.) : Chirality in Drug Research, Wiley-VCH, Weinheim (2006)
  2. Subramanian, G. (Ed.) : Chiral Separation Techniques, Wiley- VCH, Weinheim (2001)
  3. Challener, C. A. (Ed.) : Chiral Drugs, Ashgate Publishing, Aldershot (2002)
  4. FDA's Policy statement for the development of new stereoisomeric drugs. Chirality 4, 338 (1992) https://doi.org/10.1002/chir.530040513
  5. Daniels, J. M., Nestmann, E. R. and Kerr, A. : Development of stereoisomeric (chiral) drugs: a brief review of scientific and regulatory considerations. Drug Information Journal 31, 639 (1997) https://doi.org/10.1177/009286159703100303
  6. Caner, H., Groner, E., Levy, L. and Agranat, I. : Trends in the development of chiral drugs. Drug Discovery Today 9, 105 (2004) https://doi.org/10.1016/S1359-6446(03)02904-0
  7. Tucker, G. T. : Chiral switches. Lancet 355, 1085 (2000) https://doi.org/10.1016/S0140-6736(00)02047-X
  8. Agranat, I. and Caner, H. : Intellectual property and chirality of drugs. Drug Discovery Today 4, 313 (1999) https://doi.org/10.1016/S1359-6446(99)01363-X
  9. Stinson, S. C. : Chiral drugs. Chem. Eng. News 79(40) p. 79, Oct. 1 (2001) https://doi.org/10.1021/cen-v079n040.p079
  10. Rouhi, A. M. : Chirality at work. Chem. Eng. News 81(18) p. 56, May 5 (2003) https://doi.org/10.1021/cen-v081n048.p056
  11. Stinson, S. C. : Chiral drugs. Chem. Eng. News 78(43) p. 55, Oct. 23 (2000) https://doi.org/10.1021/cen-v078n043.p055
  12. McConathy, J. : Stereochemistry in drug action. J. Clin. Psychiatry 5, 70 (2003)
  13. Schreier, P., Bernreuther, A. and Huffer, M. : Analysis of Chiral Organic Molecules, Walter de Gruyter, Berlin (1995)
  14. Sheldon, R. A. : Chirotechnology: Industrial Synthesis of Optically Active Compounds, Marcel Dekker, New York (1993)
  15. Allenmark, S. G. : Chromatographic Enantioseparation, Methods and Applications, 2nd ed., Ellis Horwood, Chichester (1991)
  16. Krstulovic, A. M. (Ed.) : Chiral Separations by HPLC: Applications to Pharmaceutical Compounds, John Wiley and Sons, New York (1989)
  17. Beesley, T. E. and Scott, R. P. W. : Chiral Chromatography, John Wiley and Sons, New York (1998)
  18. Perrin, S. R. and Pirkle, W. H. : Chiral Separations by Liquid Chromatography, ACS Symposum Series 471, Ahuja, S (Ed.) Washington, D.C. p. 43 (1991)
  19. Welch, C. J. : Evolution of chiral stationary phase design in the Pirkle laboratories. J. Chromatogr. A 666, 3 (1994) https://doi.org/10.1016/0021-9673(94)80367-6
  20. Pirkle, W. H., Welch, C. J. and Lamm, B. : Design, synthesis, and evaluation of an improved enantioselective naproxen selector. J. Org. Chem. 57, 3854 (1992) https://doi.org/10.1021/jo00040a026
  21. Chiral HPLC Application Guide III, Regis Technologies, Illinois (2000)
  22. Pirkle, W. H. and Lee, W. : Chiral selector useful for separation of enantiomers of $\beta$-amino alcohol compounds. U. S. Patent 5,578,212 (1996)
  23. Chilmonczyk, Z., Ksycinska, H., Aboul-Enein, H. Y. and Lee, W. : Enantiomeric separation of some clinically used racemic drugs on Pirkle 1-J chiral stationary phases. J. Liq. Chrom. & Rel. Tech. 24, 2505 (2001) https://doi.org/10.1081/JLC-100105956
  24. Cram, D. J. : The design of molecular hosts, guests, and their complexes. Angew. Chem. Int. Engl. 27, 1009 (1988) https://doi.org/10.1002/anie.198810093
  25. Shinbo, T., Yamaguchi, T., Nishimura, K. and Sugiura, M. : Chromatographic separation of racemic amino acids by use of chiral crown ether-coated reversed-phase packings. J. Chromatogr. 405, 145 (1987) https://doi.org/10.1016/S0021-9673(01)81756-8
  26. Application Guide for Chiral HPLC Selection, 3rd ed., Daicel Chemical Industries (2002)
  27. Lee, W. and Hong, C. Y. : Direct liquid chromatographic enantiomer separation of new fluoroquinolones including gemifloxacin (LB 20304a). J. Chromatogr. A 879, 113 (2000) https://doi.org/10.1016/S0021-9673(00)00322-8
  28. Lee, W., Baek, C.-S. and Lee, K. : Chromatographic enantiomer separation of diphenylalanine on chiral stationary phases derived from chiral crown ethers. Bull. Kor. Chem. Soc. 23, 1677 (2002) https://doi.org/10.5012/bkcs.2002.23.11.1677
  29. Hyun, M. H., Jin, J. S. and Lee, W. : Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J. Chromatogr. A 822, 155 (1998) https://doi.org/10.1016/S0021-9673(98)00606-2
  30. Hyun, M. H., Jin, J. S., Koo, H. J. and Lee, W. : Liquid chromatographic resolution of racemic amines and amino alcohols on a chiral stationary phase derived from crown ether. J. Chromatogr. A 837, 75 (1999) https://doi.org/10.1016/S0021-9673(99)00100-4
  31. Hyun, M. H., Koo, H. J., Jin, J. S. and Lee, W. : Liquid chromatographic resolution of racemic compounds containing a primary amino group on a dynamic chiral stationary phase derived from chiral crown ether. J. of Liquid Chrom. & Rel. Tech. 23, 2669 (2000) https://doi.org/10.1081/JLC-100101825
  32. Bang, E., Jung, J.-W., Lee, W., Lee, D. W. and Lee, W. : Chiral recognition of (18-crown-6)-tetracarboxylic acid as a chiral selector determined by NMR spectrocropy. J. C. S. Perkin Trans. 2, 1685 (2001)
  33. Jin, J. Y., Lee, W. and Hyun, M. H. : Development of the antipode of the covalently-bonded crown ether type chiral stationary phase for the advantage of the reversal of elutionorder. J. Liq. Chrom. & Rel. Tech. 29, 841 (2006)
  34. Yashima, E. : Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation. J. Chromatogr. A 906, 105 (2001) https://doi.org/10.1016/S0021-9673(00)00501-X
  35. Zhang, T., Kientzy, C., Franco, P., Ohnishi, A., Kagamihara, Y. and Kurosawa, H. : Solvent versatility of immobilized 3,5-dimethylphenylcarbamate of amylose in enantiomeric separations by HPLC. J. Chromatogr. A 1075, 65 (2005) https://doi.org/10.1016/j.chroma.2005.03.116
  36. Zhang, T., Nguyen, D., Franco, P., Murakami, T., Ohnishi, A. and Kurosawa, H. : Cellulose 3,5-dimethylphenylcarbamate immobilized on silica: A new chiral stationary phase for the analysis of enantiomers. Anal. Chim. Acta 557, 221 (2006) https://doi.org/10.1016/j.aca.2005.10.017
  37. Jin, J. Y., Lee, W., Park, J. H. and Ryoo, J. J. : Covalently bonded and coated chiral stationary phases derived from polysaccharide derivatives for enantiomer separation of N-fluorenylmethoxycarbonyl a-amino acids with fluorescence detection. J. Liq. Chrom. & Rel. Tech. 29, 1793 (2006) https://doi.org/10.1080/10826070600717007
  38. Jin, J. Y. and Lee, W. : Enantiomer separation of N-protected aamino acids on covalently immobilized cellulose tris(3,5- chlorophenylcarbamate) chiral stationary phase in HPLC. Bull. Kor. Chem. Soc. 29, 491 (2008) https://doi.org/10.5012/bkcs.2008.29.2.491
  39. Astec HPLC Handbook, Advanced Separation Technologies Inc. (2000)
  40. Menges, R. A. and Armstrong, D. W. : Chiral Separations by Liquid Chromatography, ACS Symposium Series 471, Ahuja, S. (Ed.) Washington, D. C. p. 67 (1991)
  41. Ahuja, S. : A Strategy for Developing HPLC Methods for Chiral Drugs. LC-GC NORTH AMERICA, 25, 1112-1128 (2007)
  42. Subramanian, G. (Ed.) : A Practical Approach to Chiral Separations by Liquid Chromatography, VCH, New York (1994)