DOI QR코드

DOI QR Code

Ras에 의해 유도된 노화세포에서 핵인 스트레스에 의한 p53 안정화 연구

The Stability of p53 in Ras-mediated Senescent Cells in Response to Nucleolar Stress

  • 신충렬 (경희대학교 이과대학 생물학과) ;
  • 박길홍 (고려대학교 의과대학 생화학교실) ;
  • 이기호 (원자력의학원 분자종양학연구실) ;
  • 김상훈 (경희대학교 이과대학 생물학과)
  • Sihn, Choong-Ryoul (Department of Biology, Kyung Hee University) ;
  • Park, Gil-Hong (Department of Biochemistry, College of Medicine, Korea University) ;
  • Lee, Kee-Ho (Laboratory of Molecular Oncology, Korea Institute of Radiological & Medical Sciences) ;
  • Kim, Sang-Hoon (Department of Biology, Kyung Hee University)
  • 발행 : 2009.04.30

초록

B23/nucleophosmin은 핵인 단백질로서 외부 스트레스에 의해 핵인에서 핵으로 이동하게 된다. 이러한 세포 내 위치변화는 MDM2에 의한 p53단백질의 안정화에 영향을 미친다. 노화세포는 거대한 단일 핵인을 가지고 있으며, 외부 스트레스에 의해 p53 안정성이 감소한다. 그렇지만, 노화세포에서 어떠한 기전에 의해 p53의 불안정성이 증가하는 지는 아직 밝혀진 바가 없다. 따라서 본 연구에서는 노화세포에서 B23/nucleophosmin과 p53간의 상호 관련성을 조사하여 p53 안정성에 미치는 영향을 규명하고자 하였다. 본 연구에서는 IMR90세포주에 ras oncogene을 과발현시켜 노화세포를 유도하였다. 핵인 스트레스에 의해 노화세포 내 p53 단백질 발현은 감소하였으나, B23/nucleophosmin 단백질의 발현은 정상세포와 큰 차이가 없었다. 그렇지만, 두 단백질의 세포 내 위치는 노화세포에서 변화가 있었다. 즉, 정상세포와 달리, 노화세포에서는 스트레스에 의해 핵 내 p53발현이 증가하지 않았으며, B23/nucleophosmin은 핵 내로 이동하지 않고, 핵인에 그대로 머물러 있었다. 노화세포에서 MDM2와 p53간 상호결합이 안정적으로 유지된대 비하여, p53과 B23/nucleophosmin간의 상호결합은 감소하였다. 이러한 결과는 노화세포에서 핵인 스트레스에 의한 p53단백질의 안정성은 B23/nucleophosmin 결합이 감소하여 일어나는 것으로 해석된다.

B23/nucleophosmin, a nucleolar protein, translocates into the nucleus from the nucleolus when cells are damaged by extracellular stresses. Recently, it was shown that such translocation of B23/nucleophosmin in normal fibroblasts under stress conditions increases both the stability and activation of the p53 protein by disrupting its interaction with MDM2. Senescent cells have a single large nucleolus and a diminished capacity to induce p53 stability upon exposure to various DNA damaging agents. To investigate the role of B23/nucleophosmin in p53 stability in senescent cells, we established a senescence model system by expressing the ras oncogene in IMR90 cells. The stability of p53 was reduced in these cells in response to nucleolar stress, although the level of B23/nucleophosmin protein was not changed. In addition, p53 did not accumulate in the nucleus and B23/nucleophosmin did not translocate into the nucleoplasm. The binding affinity of B23/nucleophosmin with p53 was reduced in senescent cells, whereas the interaction between MDM2 and p53 was stable. Taken together, the stability of p53 in ras-induced senescent cells may be influenced by the ability of B23/nucleophosmin to interact with p53 in response to nucleolar stress.

키워드

참고문헌

  1. Atadja, P., H. Wong, I. Garkavtsev, C. Veillette, and K. Riabowol. 1995. Increased activity of p53 in senescing fibroblasts. Proc. Natl. Acad. Sci. USA 92, 8348-8352 https://doi.org/10.1073/pnas.92.18.8348
  2. Colombo, E., J. C. Marine, D. Danovi, B. Falini, and P. G. Pelicci. 2002. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat. Cell Biol. 4, 529-533 https://doi.org/10.1038/ncb814
  3. Fang, S., J. P. Jensen, R. L. Ludwig, K. H. Vousden, and A. M. Weissman. 2000. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945-8951 https://doi.org/10.1074/jbc.275.12.8945
  4. Feng, L., T. Lin, H. Uranishi, W. Gu, and Y. Xu. 2005. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol. Cell Biol. 25, 5389-5395 https://doi.org/10.1128/MCB.25.13.5389-5395.2005
  5. Giaccia, A. J. and M. B. Kastan. 1998. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973-2983 https://doi.org/10.1101/gad.12.19.2973
  6. Hayflick, L. 1965. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614-636 https://doi.org/10.1016/0014-4827(65)90211-9
  7. Kurki, S., K. Peltonen, L. Latonen, T. M. Kiviharju, P. M. Ojala, D. Meek, and M. Laiho. 2004. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5, 465-475 https://doi.org/10.1016/S1535-6108(04)00110-2
  8. Kwek, S. S., J. Derry, A. L. Tyner, Z. Shen, and A. V. Gudkov. 2001. Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene 20, 2587-2599 https://doi.org/10.1038/sj.onc.1204362
  9. Mason, D. X., T. J. Jackson, and A. W. Lin. 2004. Molecular signature of oncogenic ras-induced senescence. Oncogene 23, 9238-9246 https://doi.org/10.1038/sj.onc.1208172
  10. Mayer, C. and I. Grummt. 2005. Cellular stress and nucleolar function. Cell Cycle 4, 1036-1038 https://doi.org/10.1371/journal.pgen.1000889
  11. Narita, M., S. Nunez, E. Heard, M. Narita, A. W. Lin, S. A. Hearn, D. L. Spector, G. J. Hannon, and S. W. Lowe. 2003. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716 https://doi.org/10.1016/S0092-8674(03)00401-X
  12. Okuwaki, M., K. Matsumoto, M. Tsujimoto, and K. Nagata. 2001. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett. 506, 272-276 https://doi.org/10.1016/S0014-5793(01)02939-8
  13. Rubbi, C. P. and J. Milner. 2003. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 22, 6068-6077 https://doi.org/10.1093/emboj/cdg579
  14. Salminen, A., M. Helenius, T. Lahtinen, P. Korhonen, T. Tapiola, H. Soininen, and V. Solovyan. 1997. Down-regulation of Ku autoantigen, DNA-dependent protein kinase, and poly(ADP-ribose) polymerase during cellular senescence. Biochem. Biophys. Res. Commun. 238, 712-716 https://doi.org/10.1006/bbrc.1997.7371
  15. Seluanov, A., V. Gorbunova, A. Falcovitz, A. Sigal, M. Milyavsky, I. Zurer, G. Shohat., N. Goldfinger, and V. Rotter. 2001. Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53. Mol. Cell Biol. 21, 1552-1564
  16. Serrano, M., A. W. Lin, M. E. McCurrach, D. Beach, and S. W. Lowe. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602 https://doi.org/10.1016/S0092-8674(00)81902-9
  17. Szebeni, A. and M. O. Olson. 1999. Nucleolar protein B23 has molecular chaperone activities. Protein Sci. 8, 905-912 https://doi.org/10.1110/ps.8.4.905
  18. Szebeni, A., K. Hingorani, S. Negi, and M. O. Olson. 2003. Role of protein kinase CK2 phosphorylation in the molecular chaperone activity of nucleolar protein b23. J. Biol. Chem. 278, 9107-9115 https://doi.org/10.1074/jbc.M204411200
  19. Vaziri, H., M. D. West, R. C. Allsopp, T. S. Davison, Y. Wu, C. H. Arrowsmith, G. G. Poirier, and S. Benchimol. 1997. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly (ADP-ribose) polymerase. EMBO J. 16, 6018-6033 https://doi.org/10.1093/emboj/16.19.6018
  20. Vousden, K. H. and X. Lu. 2002. Live or let die: the cell's response to p53. Nat. Rev. Cancer 2, 594-604 https://doi.org/10.1038/nrc864
  21. Wu, M. H. and B. Y. Yung. 2002. UV stimulation of nucleophosmin/B23 expression is an immediate-early gene response induced by damaged DNA. J. Biol. Chem. 277, 48234-48240 https://doi.org/10.1074/jbc.M206550200
  22. Yang, C., D. A. Maiguel, and F. Carrier. 2002. Identification of nucleolin and nucleophosmin as genotoxic stress-responsive RNA-binding proteins. Nucleic Acids Res. 30, 2251-2260 https://doi.org/10.1093/nar/30.10.2251
  23. Zhang, Y., G. W. Wolf, K. Bhat, A. Jin, T. Allio, W. A. Burkhart, and Y. Xiong. 2003. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol. Cell Biol. 23, 8902-8912 https://doi.org/10.1128/MCB.23.23.8902-8912.2003