References
- Arguelles, J. C. 1997. Thermotolerance and trehalose accumulation induced by heat shock in yeast cells of Candida albicans. FEMS Microbiol. Lett. 146, 65-71 https://doi.org/10.1016/S0378-1097(96)00455-7
- Buchner, J. 1996. Supervising the fold: functional principles of molecular chaperones. FASEB J. 10, 10-19
- Burine, J. P., T. L. Carter, S. J. Hodgetts, and R. C. Matthews. 2006. Fungal heat shock proteins in human disease. FEMS Microbiol. Rev. 30, 53-88 https://doi.org/10.1111/j.1574-6976.2005.00001.x
-
Christian, G., L. Gilles, L. Jaekwon, J. M. Buhler, K. Sylvie, P. Michel, B. Helian, B. T. Michael, and L. Jean. 1998. The
$H_2O_2$ stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273, 22480-22489 https://doi.org/10.1074/jbc.273.35.22480 - Costa, V. and P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22, 217-246 https://doi.org/10.1016/S0098-2997(01)00012-7
- Crmel-Harel, O. and G. Storz. 2000. Roles of the glutathioneand thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54, 439-461 https://doi.org/10.1146/annurev.micro.54.1.439
- Dawes, I. W. 2000. Response of eukaryotic cells to oxidative stress. Agric. Chem. Biotechnol. 43, 211-217
- Elisa, C., P. Eva, E. Pedro, H. Enrique, and R. Joaquim. 2000. Oxidative damage stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275, 27393-27398 https://doi.org/10.1074/jbc.M003140200
- Francois, J. and J. L. Parrou. 2001. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25, 125-145 https://doi.org/10.1111/j.1574-6976.2001.tb00574.x
- Glover, J. R. and S. Linquist. 1998. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell 94, 73-82 https://doi.org/10.1016/S0092-8674(00)81223-4
- Hauser, N. C., K. Fellenberg, R. Gil, S. Bastuck, J. D. Hoheisel, and J. E. Perez-Ortin. 2001. Whole genome analysis of a wine yeast strain. Comp. Funct. Genom. 2, 69-79 https://doi.org/10.1002/cfg.73
- Jamieson, D. J. 1998. Oxidative stress response of the yeast Saccharomyces cerevisiae. Yeast 14, 1511-1527 https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
- Kim, I. S., H. S. Yun, H. Iwahashi, and I. N. Jin. 2006. Genome-wide expression analyses of adaptive response against menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377. Process Biochem. 41, 2305-2313 https://doi.org/10.1016/j.procbio.2006.06.005
- Kim, I. S., H. S. Yun, and I. N. Jin. 2007. Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress. J. Microbiol. Biotechnol. 17, 207-217
- Kim, J. W., I. N. Jin, and J. H. Seu. 1995. Isolation of Saccharomyces cerevisiae F38-1, a thermotolerant yeast for fuel alcohol production a high temperature. Kor. J. Appl. Microbiol .Biotechnol. 23, 617-623
- Kwon, H. B., E. T. Yeo, S. E. Hahn, S. C. Bae, D. Y. Kim, and M. O. Byun. 2003. Cloning and characterization of genes encoding trehalose-6-phosphate synthase (TPS1) and trehalose-6-phosphate phosphatase (TPS2) in Zygosaccharomyces rouxii. FEMS Yeast Res. 3, 433-440 https://doi.org/10.1016/S1567-1356(03)00035-7
- Lee, S. M., H. J. Koh, D. C. Park, B. J. Song, T. L. Huh, and J. W. Park. 2002. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med. 32, 1185-1196 https://doi.org/10.1016/S0891-5849(02)00815-8
- Mauzeroll, J., A. J. Bard, O. Owhadian, and T. J. Monks. 2004. Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy. Proc. Natl. Acad. Sci .USA 101, 17582-17587 https://doi.org/10.1073/pnas.0407613101
- Moradas-Ferreira, P. and V. Costa. 2000. Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defenses, damage and death. Redox Rep. 5, 277-285 https://doi.org/10.1179/135100000101535816
- Parrou, J. L. and J. Francois. 1997. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal. Chem. 248, 186-188 https://doi.org/10.1128/AEM.00557-07
- Perreira, M. D., E. C. Eleutherio, and A. D. Panek. 2001. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 1, 11 https://doi.org/10.1186/1471-2180-1-11
- Pretorious, I. S. 2000. Tailoring wine yeast for the new millennium:novel approaches to the ancient art of wine making. Yeast 16, 675-729 https://doi.org/10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B
- Querol, A., M. T. Fernández-Espinar, M. I. del Olmo, and E. Barrio. 2003. Adaptive evolution of wine yeast. Int. J. Food Microbiol. 86, 3-10 https://doi.org/10.1016/S0168-1605(03)00244-7
- Reinders, A., I. Romano, A. Wiemken, and C. de Virgilio. 1999. The theromophilic yeast Hansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerances. J. Bacteriol. 181, 4665-4668
- Ribeiro, M. J., A. Reinders, T. Boller, A. Wiemken, and C. de Virgilio. 1997. Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Mol. Microbiol. 25, 571-581 https://doi.org/10.1046/j.1365-2958.1997.4961856.x
- Querol, A. and G. H. Fleet. 2006. Yeasts in food and beverage. New York, Springer Verlag
- Sano, F., N. Asakawa, Y. Inoue, and M. Sakurai. 1999. A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39, 80-87 https://doi.org/10.1006/cryo.1999.2188
- Singer, M. A. and S. Lindquist. 1998a. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1, 639-648 https://doi.org/10.1016/S1097-2765(00)80064-7
- Singer, M. A. and S. Lindquist. 1998b. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 16, 460-468 https://doi.org/10.1016/S0167-7799(98)01251-7
- Van Dijck, P., P. Ma, M. Versele, M. F. Gorwa, S. Colombo, K. Lemaire, D. Bossi, A. Loiez, and J. M. Thevelein. 2000. A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth. J. Mol. Microbiol. Biotechnol. 2, 521-530
- Yoshida, A., A. Rzhetsky, L. C. Hsu, and C. Chang. 1998. Human aldehyde dehydrogenase family. Eur. J. Biochem. 251, 549-557 https://doi.org/10.1046/j.1432-1327.1998.2510549.x