Synthesis and Rietveld Refinement of the Cathode Material $LiFePO_4/C$ for Rechargeable Lithium Batteries

리튬 2차전지용 양극소재 $LiFePO_4/C$의 합성 및 리트벨트 구조분석

  • Hwang, Gil-Chan (Department of Earth and Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Choi, Jin-Beom (Department of Earth and Environmental Sciences and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Kim, Jae-Kwang (Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University) ;
  • Ahn, Jou-Hyeon (Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University)
  • 황길찬 (경상대학교 지구환경과학과 및 경상대학교 기초과학연구소) ;
  • 최진범 (경상대학교 지구환경과학과 및 경상대학교 기초과학연구소) ;
  • 김재광 (경상대학교 생명화학공학과 및 공학연구원) ;
  • 안주현 (경상대학교 생명화학공학과 및 공학연구원)
  • Published : 2009.03.31

Abstract

Carbon-coated lithium iron phosphate ($LiFePO_4/C$) composites are synthesized by the modified mechanical activation method (modified MA process) and studied by the Rietveld structural refinement. Rietveld indices of $LiFePO_4/C$ indicate good fitting with $R_p=8.14%,\;R_{wp}=11.1%,\;R_{exp}=9.09%,\;R_B=3.88%$, and S (GofF, Goodness of fit) = 1.2, respectively. $LiFePO_4/C$ with a space group Pnma shows a = 10.3229(3)${\AA}$, b = 6.0052(2) ${\AA}$, c = 4.6939(1) ${\AA}$, and V = 290.98(1) ${\AA}^3$ in dimension, indicating good agreements with those of previous works. Synthetic powders are nano-sized ($65{\sim}90nm$) homogeneous particles with high purity. Thus the modified MA method will be an efficient process to get a high quality cathode material for commercial lithium batteries.

개량된 MA법으로 합성된 $LiFe(PO_4)/C$에 대해 X-선 회절분석을 실시하여 리트벨트법에 의해 결정학적 연구를 수행하였다. 리트벨트 계산 결과 리트벨트 R 지수 값은 $R_p=8.14%,\;R_{wp}=11.1%,\;R_{exp}=9.09%,\;R_B=3.88%$, S (GofF, Goodness of fit) = 1.2으로 계산이 잘 이루어졌음을 알 수 있다. $LiFePO_4/C$는 공간군 Pnma를 가지며, 격자상수 값은 a = 10.3229(3)${\AA}$, b = 6.0052(2) ${\AA}$, c = 4.6939(1) ${\AA}$이고 체적값은 V = 290.98(1) ${\AA}^3$으로 기존 다른 합성법의 연구결과와 잘 일치한다. 분말 입자는 고순도를 가지고 나노 크기($65{\sim}90nm$)로 기존 MA법보다 상대적으로 미세하고 균질도가 향상되었다. 따라서 개량된 MA법은 상업용 리튬 2차 전지의 양극물질 생산을 위한 우수한 제조법으로 판단된다.

Keywords

References

  1. 최진범, 박종완, 이승원 (2003) 리튬2차전지용 양극 소 재 $Li[Li_xMn_{1-x-y}Cr_y]O_2$의 합성 및 층상구조 연구. 한국광물학회지, 16(3), 223-232
  2. Abrahams, I. and Easson, K.S. (1993) Structure of lithium nickel phosphate. Acta Cryst., C49, 925-926
  3. Andersson, A.S., Kalska, B., Haggstrom, L., and Thomas, J.O. (2000) Lithium extraction/insertion $LiFePO_4$: an X-ray diffraction and Mossbauer spectroscopy study. Solid State Ionics, 130(1-2), 41-52 https://doi.org/10.1016/S0167-2738(00)00311-8
  4. Armand, M. and Tarascon, J.M. (2008) Building better batteries. Nature, 451(7179), 652-657 https://doi.org/10.1038/451652a
  5. Armstrong, A.R. and Bruce P.G. (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 381, 499-500 https://doi.org/10.1038/381499a0
  6. Bjoerling, C.O. and Westgren, A. (1938) Minerals of the Varutrask Pegmatite. IX. X-ray studies on triphylite, Varulite, and their oxidation products. Geologiska Foereningensi Stockholm Foerhandlingar, 60, 67-72 https://doi.org/10.1080/11035893809443985
  7. Caballero, A., Cruz-Yusta, M., Morales, J., Santos- Pena, J., and Rodirguez-Castellon, E. (2006) A New and Fast Synthesis of Nanosized $LiFePO_4$ Electrode Materials. Eur. J. Inorg. Chem., 1758-1764
  8. Delacourt, C., Rodriguez-Carvajal, J., Schmitt, B., Tarascon, J.M., and Masquelier, C. (2005) Crystal chemistry of the olivine-type $Li_xFePO_4$ system $(0 {\leq} x {\leq} 1)$ between 25 and $370{^{\circ}C}$. Solid State Sciences, 7(12), 1506-1516 https://doi.org/10.1016/j.solidstatesciences.2005.08.019
  9. Delacourt, C., Poizot, P., Levasseur, S., and Masquelier, C. (2006) Size effects on carbon-free LiFePO4 powders: The key to superior energy density. Electrochem. solid-state Lett., 9(7), A352-355 https://doi.org/10.1149/1.2201987
  10. Franger, S., Cras, F.L., Bourbon, C., and Rouault, H. (2003) Comparison between different LiFePO4 synthesis routes and their influence on its physicochemical properties. J. Power Sources, 119-121, 252-257 https://doi.org/10.1016/S0378-7753(03)00242-8
  11. Garcia-Moreno, O., Alvarez-Vega, M., Garcia-Alvarado, F., Garcia-Jaca, J., Gallardo-Amores, J.M., Sanjuan, M.L., and Amador, U. (2001) Influence of the Structure on the Electrochemical Performance of Lithium Transition Metal Phosphates as Cathodic Materials in Rechargeable Lithium Batteries: A New High-Pressure Form of $LiMPO_4$ (M = Fe and Ni). Chem. Mater., 13, 1570-1576 https://doi.org/10.1021/cm000596p
  12. Geller, S. and Durand, J.L. (1960) Refinement of the structure of $LiMnPO_4$. Acta Cryst., 13, 325-331 https://doi.org/10.1107/S0365110X60002521
  13. Hu, Y., Doeff, M.M., Kostecki, R., and Fiñones, R. (2004) Electrochemical performance of sol-gel synthesized $LiFePO_4$ in lithium batteries. J. Electrochem. Soc., 151, A1279-A1285 https://doi.org/10.1149/1.1768546
  14. Kim, K.-S., Lee, S.-W., Moon, H.-S., Kim, H.-J., Cho, B.-W., Cho, W.-I., Choi, J.-B., and Park, J.-W. (2004) Electrochemical properties of Li-Cr-Mn-O cathode materials for lithium secondary batteries. J. Power Sources, 129, 319-323 https://doi.org/10.1016/j.jpowsour.2003.11.027
  15. Kim, J.-K., Cheruvally, G., Choi, J.-W., Kim, J.-U., Ahn, J.-H., Cho, G.-B., Kim, K.-W., and Ahn H.-J. (2007a) Effect of mechanical activation process parameters on the properties of $LiFePO_4$ cathode material. J. Power Sources, 166, 211-218 https://doi.org/10.1016/j.jpowsour.2006.12.089
  16. Kim, J.-K., Choi, J.-W., Cheruvally, G., Kim, J.-U., Ahn, J.-H., Cho, G.-B., Kim, K.-W., and Ahn, H.-J. (2007b) A modified mechanical activation synthesis for carbon-coated $LiFePO_4$cathode in lithium batteries. Material Letters, 61, 3822-3825 https://doi.org/10.1016/j.matlet.2006.12.038
  17. Kim, J.-K., Cheruvally, G., Ahn, J.-H., Hwang, G.-C., and Choi, J.-B. (2008) Electrochemical properties of carbon-coated $LiFePO_4$ synthesized by a modified mechanical activation process. J. Phys. Chem. of Solids, 69, 2371-2377 https://doi.org/10.1016/j.jpcs.2008.03.018
  18. Klein, C. and Dutrow, B. (2008) The 23rd Edition of the Manual of Mineral Science. after JD Dana, John Wiley & Sons. NY, p. 427
  19. Kubel, F. (1994) Crystal structure of lithium cobalt double orthophosphate, $LiCoPO_4$. Zeitschrift für Kristallographie, 209, 755 https://doi.org/10.1524/zkri.1994.209.9.755
  20. Kwon, J.K., Kim, C.W., Jeong, W.T., and Lee, K.S. (2004) Synthesis and electrochemical properties of olivine $LiFePO_4$ as a cathode material prepared by mechanical alloying. J. Power Sources, 137, 93-99 https://doi.org/10.1016/j.jpowsour.2004.05.048
  21. Liao, X.-Z., Ma, Z.-F., Wang, L., Zhang, X.-M., Jiang, J., and He, Y.-S. (2004) A novel synthesis route for $LiFePO_4/C$ cathode mateirals for lithium-ion batteries. Electrochem. Solid-State Lett., 7, A522-A525 https://doi.org/10.1149/1.1813191
  22. MacNeil, D.D., Christensen, L., Landucci, J., Paulsen, J.M., and Dahn, J.R. (2000) An autocatalystic mechanism for the reaction of $Li_xC_{_{\circ}}O_2$ in electrolyte at elevated temperature. J. Electrochem. Soc., 147, 970-979 https://doi.org/10.1149/1.1393299
  23. Morgan, D., Van der Ven, A., and Ceder, G. (2004) Li Conductivity in $Li_xMPO_4$ (M = Mn, Fe, Co, Ni) Olivine Materials. Electrochem. Solid-State Lett., 7(2), A30-A32 https://doi.org/10.1149/1.1633511
  24. Numata, K., Sasaki, C., and Yamanaka, S. (1999) Synthesis and characterization of layer structured solid solutions in the system of $LiCoO_2-Li_2MnO_3$, Solid State Ionics, 117, 257-263 https://doi.org/10.1016/S0167-2738(98)00417-2
  25. Osorio-Guillén, J.M., Holm, B., Ahuja, R., and Johansson B. (2004) A theoretical study of olivine $LiMPO_4$ cathodes. Solid State Ionics, 167(3-4), 221-227 https://doi.org/10.1016/j.ssi.2003.09.015
  26. Park, K.S., Kang, K.T., Lee, S.B., Kim, G.Y., Park, Y.J., and Kim, H.G. (2004) Synthesis of $LiFePO_4$ with particle by co-precipitation method. Mater. Res. Bull., 39, 1803-1810 https://doi.org/10.1016/j.materresbull.2004.07.003
  27. Pujana, A., Pizarro, J.L., Goni, A., Rojo, T., and Arriortua, M.I. (1998) Synthesis and structural study of the $Li_{1-3x}Fe_xCoPO_4$ (x = 0-0.10) solid solution related to the litiophylite-triphylite family. Anales de Quimica International Edition, 94, 383-387
  28. Rietveld, H.M. (1969) A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Cryst., 2, 65-71 https://doi.org/10.1107/S0021889869006558
  29. Rodriguez-Carvajal, J. (2002) An Introduction to the Program Fullprof 2000. (Version July 2001), (PDF electronic manual) Laboratoire Leon Brillouin (CEA -CNRS), France
  30. Roisnel, T. and Rodriguez-Carvajal, J. (2002) Win- PLOTR, a Graphic Tool for Powder Diffraction. (PDF electronic manual) Laboratoire Leon Brillouin (CEA-CNRS), France
  31. Scherrer. P. (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten der Akademie der Wissenschaften in Gottingen. II. Mathematisch-Physikalische Klasse, 2, 98
  32. Streltsov, V.A., Belokoneva, E.L., Tsirelson, V.G., and Hansen, N.K. (1993) Multiple analysis of the electron density in triphylite, $LiFePO_4$, using X-ray diffraction data. Acta Crystal. B, 49(2), 147-153 https://doi.org/10.1107/S0108768192004701
  33. Takahashi, M., Tobishima, S., Takei, K., and Sakurai, Y. (2001) Characterization of $LiFePO_4$ as the cathode material for rechargeable lithium batteries. Journal of Power Sources, 97-98, 508-511 https://doi.org/10.1016/S0378-7753(01)00728-5
  34. Takahashi, M., Tobishima, S.-i., Takei, K., and Sakurai, Y. (2002) Reaction behavior of $LiFePO_4$ as a cathode material for rechargeable lithium batteries. Solid State Ionics, 148, 283-289 https://doi.org/10.1016/S0167-2738(02)00064-4
  35. Tang, P. and Holzwarth, N.A.W. (2003) Electronic structure of $FePO_4$, $LiFePO_4$, and related materials. Physical Review B, 68, 165107(1-10)
  36. Tarascon, J.M. and Armand, M. (2001) Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367 https://doi.org/10.1038/35104644
  37. Warda, S.A. and Lee, S.-L. (1997) Refinement of the crystal structure of lithium nickel phosphate, $LiNiPO_4$. Zeitschrift fur Kristallographie, 212, 319 https://doi.org/10.1524/zkri.1997.212.4.319
  38. Wen, Y., Zeng, L., Tong, Z., Nong, L., and Wei, W. (2006) Structure and properties of $LiFe_{0.9}V_{0.1}PO_4$. J. Alloy. Comp., 416(1-2), 206-208 https://doi.org/10.1016/j.jallcom.2005.08.023
  39. Xia, Y., Hideshima, Y., Kumada, N., Nagano, M., and Yoshio, M. (1998) Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4V lithium batteries: Part V. Enhancement of the elevated temperature performance of $Li/LiMn_2O_4$ cells. J. Power Sources, 74, 24-28 https://doi.org/10.1016/S0378-7753(98)00005-6
  40. Yakubovich, O.V., Belokoneva, E.L., Tsirel'son, V.G., and Urusov, V.S. (1990) Electron density distribution in synthetic triphylite $LiFePO_4$. Vestnik Moskovskogo Universiteta, Geologiya, 45, 93-99
  41. Yakubovich, O.V., Simonov, M.A., and Belov, N.V. (1977) The crystal structure of a synthetic triphylite LiFe$(PO_4)$. Doklady Akademii Nauk SSSR, 235, 93-95
  42. Yamada, A. and Chung, S.-C. (2001) Crystal chemistry of the olivine-type $Li(Mn_yFe_{1-y})PO_4$ and $(Mn_yFe_{1-y})PO_4$ as possible 4V cathode materials for lithium batteries. J. Electrochem. Soc., 148(8), A960-A967 https://doi.org/10.1149/1.1385377
  43. Yamada, A., Chung, S.C., and Kinokuma, K. (2001) Optimized $LiFePO_4$ for lithium battery cathodes. J. Electrochem. Soc., 148(3), A224-A229 https://doi.org/10.1149/1.1348257
  44. Yang, M.-R., Teng, T.-H., and Wu, S.-H. (2006) $LiFePO_4$/carbon cathode materials prepared by ultrasonic spray pyrolysis. J. Power Sources, 159(1), 307-311 https://doi.org/10.1016/j.jpowsour.2006.04.113
  45. Young R.A. (Ed.) (1993) The Rietveld method. IUCr., Oxford
  46. Young, R.A. and Wiles, D.B. (1982) Profile Shape Functions in Rietveld Refinements. J. Appl. Cryst., 15, 430-438 https://doi.org/10.1107/S002188988201231X
  47. Zhou, F., Cococcioni, M., Kang, K., and Ceder, G. (2004) The Li intercalation potential of $LiMPO_4$ and $LiMSiO_4$ olivines with M = Fe, Mn, Co, Ni. Electrochem. Comm., 6(11), 1144-1148 https://doi.org/10.1016/j.elecom.2004.09.007