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ABSTRACT

In this study, the pricing performances of alternative simple option models are examined by
creating a simulated market environment in which asset prices evolve according fo a stochastic
volatility process. To do this, option prices fully consistent with Heston[9]’s model are generated.
Assuming this prices as market prices, the trading positions utilizing the Black~Scholesi4] model,
a semi-parametric Corrado-Sul7] model and an ad-hoc moditied Black-Scholes model are evaluated
with respect to the true option prices obtained from Heston's stochastic volatility model. The
simulation results suggest that both the Corrado-Su model and the modified Black-Scholes model
perform well in this simulated world substantially reducing the biases of the Black-Scholes model
arising from stochastic volatility. Surprisingly, however, the improvements of the modified
Black-Scholes model over the Black-Scholes model are much higher than those of the Corrado-Su

model.
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1. Inroduction

Over the three decades after the seminal paper by
Black and Scholes[3], alternative option models have
been put forth. The driving force of these theoretical
developments is empirical biases associated with the
Black-Scholes model[15].

Perhaps the most widely recognized violation of the
assurnption of the Black~Scholes model is that the price
volatility of the underlying asset is not constant{6]. As
a result, a number of researchers have developed
option—pricing models that allow changing volatility({5]
[10]. A notable advance in this vein of research is the
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development by Heston[9] of a closed~form option
pricing formula for the case in which volatility follows
a square-root diffusion. Building on Hestor{9], option
pricing formula that allow price jumps and stochastic
interest rates have been developed 11[2]. In addition, in
the discrete time framework, generalized autoregressive
conditional heteroskedasticity option models (GARCH)
have also been proposed(8].

However, a major impediment to using an option
model that allows changing volatility comes from the
difficulty of estimating and calibrating parameters
required for such a model. For example, the Heston's
model[9] requires five parameters to fully specify the
volatility process, whereas the Black-5Scholes model, by
assuming constant volatility, has only one. Therefore,
to make use of the Heston model, one faces the



74 The Journal of Digital Policy & Management VOL. 7, NO. 1(2009. 3)

problem of estimating these five parameters and
incurring the resulting estimation risk. Bakshi, Cao, and
Chen[l] show that estimating the parameters of a
volatility process often results in unrealistic and
unstable values.

On the other hand, one method preferred by option
professionals involves using the Black-Scholes formula
to back out implied volatilities and then pricing making
use of these implied volatilities, Often, the implied
volatilities are smoothed by fitting to a (typically
quadratic) polynomial of strike prices. Though ad hoc
and without theoretical foundation, this modified
version of the Black-Scholes model has naturally come
into practice to adjust non—normal characteristics of the
underlying asset returns revealed by implied volatilities.

An altemative approach offering the virtue of
simplicity, but with theoretical foundation has been
suggested by Jarrow and Rudd[11] and Corrado and
Suel7]. They propose option models that assume that
the underlying asset price has a distribution known
only through its moments. Specifically, they directly
adjust  Black-Scholes non-normal
skewness and kurtosis of the underlying asset
distribution. Their models require only two additional
parameters beyond volatility.

While an ad-hoc muxdified version of Black-Scholes
model and a skewness and kuwtosis  adjusted
semi-parametric model are simple and easy-to-implernent,
an interesting issue is whether and to what degree

formula  for

these two alternatives provide a substitute for a
complete  stochastic volatility model. The existing
literature has shown that either a modified
Black-Scholes model or a skewness and kurtosis
adjusted model can effectively reduce the original
Black-Scholes model's price deviations and be used as
a workable solution even under stochastic
volatility[7I[12]13][14]. However, their comparative
performances have not yet been examined.

In this study, the pricing performances of the
modified Black-Scholes model and the Corrado-Su
model are examined by Monte Carlo simulation. The
Monte Carlo approach is a valuable and flexible
computational tool in modermn finance. With the aid of
IT revolution, epitomized by the increased availability

of powerful computers, this method has allowed a
variety of numerical methods extensively used in
financial industry. This study utilizes this method to
examine the validity of using alternative option models
when asset volatility is stochastic. Indeed, if an ad-hoc
model based on the Black-Scholes formula can
effectively performs on par with an exact stochastic
volatility model or a skewness and kurtosis adjusted
model, we might then understand why market
participants still overwhelmingly prefer such a method
to value and hedge options. Therefore, the results of
the study may have some important implications for
options trading and valuations as well as its related
digital financial industries.
The simulation proceeds as follows:

First, simulated security prices consistent with the
stochastic volatility process specified by Heston[12} are
generated. At the same time, option prices are
computed using the Heston[12] formula to produce true
option prices. Market participants accept these prices
as given, but do not know the exact process generating
these prices.

Second, option traders are assumed to price their
positions utilizing either the Black~Scholes model, the
modified Black-Scholes model and the Corrado-Su
model  until option maturities. Their trading positions
are then evaluated with respect to true prices obtained
from Heston's stochastic volatility model to examine to
what degree these models approximate the performance
of the Heston model in this simulated world.

This study is organized as follows. Section 2
introduces the alternative option pricing models
employed in this study. Section 3 briefly examines the
empirical performance of these models utilizing a data
set published in Rubinstein{16). Section 4 explains
Monte Carle simulation design and presents simulation
results. Conclusions are presented in the final section.

2. Option Models

2.1 The Black-Scholes model

The Black and Scholes (BS) model assumes that the
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underlying security price St, follows a geometric
Brownian motion diffusion process as specified in
equation (1). The parameters g andV v designate the
constant drift and volatility assumptions of the model,
and dz represents a Wiener process for which
E(dz) =0 and E(dz%)=dt.

dS=pSdt+ vSdz )

Black and Scholes[4] then derive their famous
formula for the arbitrage-free price of a European call
option on a non-dividend paying security:

C = SN(d,) — Ke " T U N(d,)
In(S/K) +(r+v2)(T—t)
Vu{T—t)

dy=dy— /T~1

dy =

22 Heston's stochastic volatility model

Heston's stochastic volatility (SV) model generalizes
the Black-Scholes formula to allow a stochastic
volatility process, in which the security price S, and
the return variance v, are assumed to follow this joint

diffusion process:

ds, = pSdt + Vv,dz @

dv, = k(0 — v, )dt + 0 \/v,dz,

The security price diffusion in equation (3) is similar
to that specified in equation (1) except that variance v,
itself follows a diffusion process driven by the Wiener
process dz , with a “volatility of volatility” parameter

o, with reversion to a mean value of 6 at the rate x.
The joint diffusion process in eguation (3) allows a
correlation between the Wiener diffusions dz, and
dz o, such that E(dz dz,)=p.

Hestonl{9] derives the price of a European call option
on a non—dividend paying security when the underlying
price and its return variance are driven by the joint
diffusion process specified in equation (3), His
closed—form formula is:

G =8P~ K "V, &)
where P (7=1,2) are conditional probabilities:
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In the above equation,

is a volatility risk premmium. Note that, in addition to the
Black-Scholes model, the Heston formula has four
additional unknown parameters: mean of variance 6,
reversion rate x, volatility of volatlity o, and
correlation .

2.3 Modified Black-Scholes Model

The modified Black-Scholes (MBS) model is an
ad-hoc method widely used among options
professionals in various forms. Essentially, the method
accepts market option prices as given and then
calculates an implied volatility for each observed option
price. Specifically, the implied volatility, IV(K) for a call
option with strike price K is the volatility value that
equates the observed market price of the call C(K) to

the Black-Scholes formula price given in equation (2)
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when IV(K) is substituted for the volatility parameter
V'p. The specific volatility smile method followed here
involves estimating the structural form of the implied
volatility using a quadratic regression. The volatility
value for a call option with strike price K is then
obtained from the regression equation to be used as an
input for the Black-Scholes model.

2.4 Corrado-Su Model

Corrado and Su (CS) model computes option prices
when the distribution of the underlying asset returns at
option expiration departs from a normal distribution by
directly adjusting non—norami skewness and kurtosis
to the Black-Scholes formular as follows:

C{=c33+ﬂ3Q3+(/14_3)Q4 (5)

where CBS is the Black-Scholes option price in
equation (2) and

Q3=—3,1T5t\/v(T— N2V A T— Dn(d) + vNd)]

Qu=—4r SVAT=Dld*~1-3V A T~ D

x(d—V o(T— D)n(d) + (AT — ) *’N(d)]

In equation (5), all parameters are equally defined as
those of the Black-Scholes model except for the
additional parameters p, and p, which represent
non-normal skewness and kurtosis of unknown
distribution of the underlying asset returns. The
Corrdo-Su  model  has distribution
parameters: \f?), #qoand g,

three price

3. Empirical Analysis
3.1 Call option data and Implied volatility

As an initial illustration of deviations of Black-
Scholes option prices from actual market prices, I make
use of S&P 500 index call options data originally
published and presented in Figure 4 of Rubinstein{16].

These data represent observed June 1990 prices for call
options on the S&P 500 index expiring in 164 days.
These data are presented here in <Table 1>, in
which the first column lists strike prices, while the
second and third columns report the corresponding bid
and ask option prices. The fourth column contains
averages of these bid-ask prices. Finally, the last
colurnn shows Black-Scholes implied volatiliies (IV)
obtained from the averages of the bid-ask prices.

(Table 1) Call Prices and {mplied Volatilities

10071

20 280
2H 8666 86.71 819 56
30 6300 64.04 6352 229
3% 4200 275 23 201
330 3797 3360 B2 196
3H RZ80 ] 3464 3436 190
340 30.10 30.73 042 184
340 264 2713 2679 178
30 279 2348 214 172
3H 19.32 1988 1960 167
30 1598 1654 1626 161
36 1313 137 1344 155
30 1052 1115 10.84 149
3% 837 912 87 143
30 6.65 740 703 137
35 491 560 526 131

As Rubinstein emphasizes, if the Black-Scholes
model is correctly specified essentially the same implied
volatility should be observed across all strike prices.
However, as shown in Table 1 the implied volatilities
produced by the Black-Scholes formula exhibit
systematic biases. Specifically, the implied volatilities
decrease monotonically from 28 percent at a strike price
of 290 to 13.1 percent at a strike price of 385.

3.2 Fitting alternative option models

Parameters of the Black and Scholes (BS), Heston
(8V), and Corrado-Su (CS) models can be estimated
from the data in Table 1 using non-linear regressions.
Let £2 denote the vector of parameters to be estimated
for a particular option pricing model. For example, for
the BS model, £2={+/0} for the CS model, 2={/v, 4,
g, and 2=(/v, %, 6, o, p} for SV model
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Parameters are estimated by minimizing the following
sum of squared deviations between observed option
prices and prices generated by the parameter set:

Min 2(C= CH(@) * ®

In equation (6), C°* represents the jth observed call
price, and C ’f’ (£2) represents the jth call price specified
by the parameter set 2. <Table 2> presents estimated

option-implied parameters obtained using equation (6)
and the options data from <Table 1>.

{Table 2> Option Implied Parameters

to the RMSE error of 161 for the BS model.

{Table 3> Goodness of Fits for Option Models

Sire Al T ;
Prices Bl b - B0 L G B
20 109.59 100.12 109.70 109.21 10958
75 @19 16 %9 B8 %63
300 63.52 6163 63.73 6378 6355
325 4238 3989 225 4251 42.14
330 3R29 B RB17 B36 R10
335 34.36 3222 3419 420 417
340 3042 2868 033 3034 30,36
345 26.719 R37 2660 653 2669
B0 23.14 228 2303 2295 2318
X5 1960 1544 1965 1954 1986
360 16.26 1635 16.49 1641 16.73
55 1344 1450 1358 1357 1383
370 10.84 12.39 1098 1103 11.17
375 875 1051 871 879 879
30 703 835 6.79 6.86 6.70
335 5.26 740 5.23 523 491
RMSE 161 0.15 .19 0.24

4. Simulation Experiments

Model Estimates
BS Vo 0.173
x 0.000
6 0.033
sV c 0521
o -0556
Vo 0.181
y ~1.253
cs . 3188
Vo 0.162

<Table 3> contains theoretical values for the SV
model, the CS model, and the BS model calculated
using option implied parameters along with market
option prices. In addition, fitted values from the MBS
model obtained by substituting implied volatilities from
the Black-Scholes model are presented. The root mean
square errors (RMSE) of the pricing errors calculated
from equation (7) immediately below are also provided
at the bottom of <Table 3>.

1 & 2
rusE=| -, 3 (C,~C @

According to the goodness of fit measured by
RMSE, the 8V model ranks first, the CS model second,
the MBS model third, while the BS model ranks last.
This ranking is not unexpected, as the SV model has
the most free parameters to fit to the data, while the
BS model has the least. However, differences in RMSE
among the first three models are small when compared

The discussion above suggests that the SV model
can largely correct for the empirical limitations of the
BS model. This is consistent with the existing
literaturef1].

However, despite the improvements offered by a
stochastic volatility option pricing model, it is quite
challenging for option traders to make use of SV class
models. This arises from the difficulties associated with
parameter estimation. Direct estimation from observed
prices is typically unreliable, though it is possible to
extract option implied parameters via non-linear least
squares as [ did above. But even in this case, estimated
parameters often exhibit unrealistic and unstable values
over timell].

In this section of the paper, a Monte Carlo simulation
is used to examine the pricing performance of the BS
model, the CS model, and the MBS model when the
underlying asset price is assumed o follow the
stochastic volatility process defined in equation (3).
The objective of these simulations is to examine the
extent to which theses alternative models compete with
the performance of an exact Heston model. In these
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simulations the BS model is misspecified as it does not
incorporate a stochastic volatility process, while the CS
model and the MBS model represent easy-to-implement
alternatives to the BS model.

4.1 Experimental simulation design

Fach simulation experiment is based on a time series
of security prices and variances, ie, S, and v,
respectively, simultaneously generated as follows, in
which z,, and z, are independent standard normal

variables and At corresponds to the passage of a single
trading day, ie, At = 1/252.

S = (1+p)s_ot+ VUAES 2y
v=v_1+e@—v,_,)Ot+ 8

OV 1 D21 = 7+ 2p)

The parameters u, x, o, 8, and p are defined in
equation (3), and are set to the values specified in
Table 5. Each time series begins with an initial security
price S, = 100 and volatility of \/v—O = {15,
respectively, and then security prices and vartances are
generated randomly until option’s maturity T,

(Table 4> Default Simulation Parameters
Volatility Vo 015

Mean Reversion x 150
Long-Tern Variance 7 002
Volatility of Volatility o 040

Correlation o -050

Expected Return ] 012

Riskless interest rate s 006

For each generated series of security prices and
volatilities, prices for five call options(deep out of the
money, out of the money, at the money, in the money,
and deep in the money options) are computed via the
SV model based on the input parameters specified in
<Table 4>. These five call option prices represent
simulated daily market option prices. Market
participants can observe these market option prices but
the price generating function is assumed unknown to

them. Therefore, the option models they can utilize to
evaluate the market option prices confined to the BS
model, the CS model and the MBS model.

The goodness of fit of the alternative option models
are evaluated as follows: At day t, the parameters
implied in the market option prices are estimated for
CS model, BS model and MBS model. The estimated
parameters are then used to calculate the fitted option
prices of the alternative models across the strike prices.
These theoretical prices are compared to the true option
prices produced from the Heston model until option
maturity to obtain the average daily percentage errors
(APE) as shown in equation (9).

CItI"' C‘iﬂ)

L
APE= T;( cA ) (9)

where C# represents the true call price and C*’

represents jth model price at time t respectively. This
simulation process is repeated for 1,000 times.

4.2 Simulation Results

<Table 5> compares the goodness of fit of the MBS
model, the CS model and the BS model. Each entry of
<Table 5> represents the simulation average of APE
calculated for each model. The RMSE at the bottom of
<Table 5> represents the average percentage pricing
errors of equally weighted option portfolios across
strike prices over the life of the options contracts. The
RMSE measures suggest that the MBS model performs
best and the BS model performs worst under stochastic
volatility. With one-month maturity options, the BS
model produces 0.2017% of pricing errors for a equally
weighted option portfolio across strike prices. The
MBS model reduces the BS model’'s pricing errors by
0.279% percentage point or 9.8 percent of pricing
errors.  ‘The performance of the CS model places in
ranks between the MBS and the BS models, reducing
the BS pricing errors hy 0.1201 percentage point or 41.1
percent of pricing errors.

Similar results have been produced for longer-term
options. With three-month and six month maturity
options, the percentage pricing errors of the BS model
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{Table 5 Pricing Performance of Alternative Option Models

S/x Maturity = | month Matirity .= 3 month Matiifity = 6 month
b BS MBS S BS MBS £s BS MBS s
0.90 -1.4318 00482 08571 -0.5830 0.0621 0.3667 -0.3289 0.0640 0.3297
0% -0.2777 -0.0362 -0.0353 -0.1863 -0.0387 00134 -0.1507 -0.0402 ~-0.0259
1.00 0.0004 ~0.0001 0.0008 0.0029 -0.0061 0.0011 0.0053 -0.0059 0.0013
1.05 0.0137 0.0010 -0.0003 0.0211 0.0018 -0.0001 0.0243 0.0023 -0.0002
1.10 0.0049 -0,0001 0.0002 0.0139 -0.0003 0.0001 0.0183 -0.0004 0.0002
RMSE 0.2917 0.0121 0.1716 0.1225 0.0147 0.0734 0.0726 0.0152 0.0661

for a equally weighted option portfolio across strike
prices are 0.1225% and 0.0726% respectively. However,
they are 0.0147% and 0.0152% for the MBS model and
0.0734% and 0.0661% for the CS model respectively.
The MBS model reduces 88.0 percent of the BS pricing
errors for three month maturity options and 79.1 percent
for six month maturity options. For the CS model, the
reduction is 407 percent for three month maturity
options and 8.9 percent for six month maturity options.

5. Conclusion

In this paper, the pricing performance of the BS
model, the MBS model and the CS model were
examined using Monte Carlo simulation experiments in
a setting in which the volatility of the underlying asset
was stochastic. The simulation results suggest that
both the MBS and the CS models perform well in this
situation substantially reducing the BS pricing errors
caused by stochastic volatility across all strike prices
considered.  Surprisingly, however, the improvements
of the MBS model over the BS model are much higher
than those of the CS model. This result helps us to
understand why option professionals have strong
preferences to a Black-Scholes based model over more
complicated theoretical models. Methods based on the
Black-Scholes formula are the simplest model to
implement while their performances are no worse than
complicated models. This may also explain why the
Black-Scholes formula is the overwhelmingly preferred
choice of option professionals even though it is widely
accepted that the constant volatility assumption of the
Black-Scholes model is violated in real world financial
market.
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