DOI QR코드

DOI QR Code

이온교환된 NaY 제올라이트를 이용한 TBM와 THT의 흡착제거

Adsorptive Removal of TBM and THT Using Ion-exchanged NaY Zeolites

  • 정갑순 (부경대학교 응용화학공학부) ;
  • 이석희 (부경대학교 응용화학공학부) ;
  • 천재기 (부경대학교 응용화학공학부) ;
  • 최재욱 (부경대학교 안전공학부) ;
  • 우희철 (부경대학교 응용화학공학부)
  • Jung, Gap-Soon (Department of Applied Chemical Engineering Pukyong National University) ;
  • Lee, Seok-Hee (Department of Applied Chemical Engineering Pukyong National University) ;
  • Cheon, Jae-Kee (Department of Applied Chemical Engineering Pukyong National University) ;
  • Choe, Jae-Wook (Department of Safety Engineering Pukyong National University) ;
  • Woo, Hee-Chul (Department of Applied Chemical Engineering Pukyong National University)
  • 발행 : 2009.03.31

초록

천연가스로부터 유기 황 화합물인 THT와 TBM의 흡착 제거를 위해 NaY 제올라이트계를 이용하여 흡착실험을 수행하였다. NaY에 대한 표면의 산-염기적 특성을 변화시키고 흡착능의 향상을 도모하기 위하여 Li, K, Fe, Co, Ni, Cu, Ag 등의 금속이온으로 이온교환하였으며, 이를 부취제 THT와 TBM의 흡착 제거에 적용하였다. 그 결과 Cu-NaY, Ag-NaY, NaY에서 다른 물질들에 비해 THT, TBM의 파과흡착량이 높게 나타났으며, Cu, Ag가 이온교환된 제올라이트의 증가된 산성적 특성 때문에 다른 이온들에 비해 높은 파과흡착량을 나타낸 것으로 사료되어진다. 산량이 Ag-NaY보다 높게 측정된 Cu-NaY의 경우, Cu의 담지량을 조절하였다. 이들 가운데 0.5 M의 질산구리 용액으로 이온교환된 Cu-NaY-0.5가 가장 높은 파과흡착량을 보였으며, THT에 대해 1.85 mmol-S/g, TBM에 대해 0.78 mmol-S/g을 각각 나타내었다. 그리고 THT의 탈착 활성화에너지는 NaY, Cu-NaY-0.5 두 물질에 대하여 큰 차이가 없었으며, TBM의 탈착 활성화에너지의 경우 Cu-NaY-0.5 흡착제에서 NaY보다 높게 측정되었다.

Adsorptive removal of tetrahydrothiophene (THT) and tert-butylmercaptan (TBM) that were widely used sulfur odorants in pipeline natural gas was studied using various ion-exchanged NaY zeolites at ambient temperature and atmospheric pressure. In order to improve the adsorption ability, ion exchange was performed on NaY zeolites with alkali metal cations of $Li^+,\;Na^+,\;K^+$ and transition metal cations of $Cu^{2+},\;Ni^{2+},\;Co^{2+},\;Ag^+$. Among the adsorbents tested, Cu-NaY and Ag-NaY showed good adsorption capacities for THT and TBM. These good behaviors of removal of sulfur compound for Cu-NaY and Ag-NaY zeolites probably was influenced by their acidity. The adsorption capacity for THT and TBM on the best adsorbent Cu-NaY-0.5, which was ion exchanged with 0.5 M copper nitrate solution, was 1.85 and 0.78 mmol-S/g at breakthrough, respectively. It was the best sulfur capacity so far in removing organic sulfur compounds from fuel gas by adsorption on zeolites. While the desorption activation energy of TBM on the Cu-NaY-0.5 was higher than NaY zeolite, the difference of THT desorption activation energy between two zeolites was comparatively small.

키워드

참고문헌

  1. Haile, S. M., "Fuel Cell Materials and Components," Acta Mater., 51(19), 5981-6000 (2003). https://doi.org/10.1016/j.actamat.2003.08.004
  2. Rojey, A., Thoma, M., and Jullian, S., "Process for Treatment of Natural Gas at a Storage Site," US Patent No. 5,803,953 (1998).
  3. Bonville, L. J., Degeorge, Jr., C. L., Foley, P. F., Garow, J. R., Lesieur, R., Preston, J. L., and Szydlowski, D. F., "Method for Desulfurizing a Fuel for Use in a Fuel Cell Power Plant," US Patent No. 6,159,256 (2000).
  4. Ma, X., Sun, L., and Song, C., "A New Approach to Deep Desulfurization of Gasoline, Diesel Fuel and Jet Fuel by Selective Adsorption for Ultra-clean Fuels and for Fuel Cell Application," Catal. Today, 77(1-2), 107-116 (2002). https://doi.org/10.1016/S0920-5861(02)00237-7
  5. Satokawa, S., Kobayashi, Y., and Fujiki, H., "Adsorptive Removal of Dimethylsulfide and t-Butylmercaptan from Pipeline Natural Gas Fuel on Ag Zeolites under Ambient Condition," Appl. Catal. B, 56(1-2), 51-56 (2005). https://doi.org/10.1016/j.apcatb.2004.06.022
  6. Wakita, H., Tachibana, Y., and Hosaka, M., "Removal of Dimethylsulfide and t-Butylmercaptan from City Gas by Adsorption on Zeolites," Micropor. Mesopor. Mat., 46(2-3), 237-247 (2001). https://doi.org/10.1016/S1387-1811(01)00299-2
  7. Li, Y., Yang, F. H? Qi, G., and Yang, R. T., "Effects of Oxygenates and Moisture on Adsorptive Desulfurization of Liquid Fuels with Cu( I )Y Zeolite," Catal. Today, 116(4), 512-518 (2006). https://doi.org/10.1016/j.cattod.2006.06.037
  8. Kim, H. S., Chung, J. K., Lee, S. H., Cheon, J. K., Moon, M. J., and Woo, H. C, "Selective Adsorption of Sulfur Compounds from Natural Gas Fuel Using Nanoporous Molecular Sieves," Clean Tech., 13(1), 64-71 (2007).
  9. Cvetanovic, R. J., and Amenomiya, Y., "Application of a Temperature-programmed Desorption Technique to Catalyst Studies," Adv. Catal, 17, 103-149 (1967). https://doi.org/10.1016/S0360-0564(08)60686-0