DOI QR코드

DOI QR Code

Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) over Nickel Catalyst Supported on Surfactant-templated Mesoporous Alumina

계면활성제를 이용하여 제조된 중형기공성 알루미나 담체에 담지된 니켈촉매 상에서 액화천연가스(LNG)의 수증기개질반응에 의한 수소 제조

  • Seo, Jeong-Gil (School of Chemical and Biological Engineering, Seoul National University) ;
  • Youn, Min-Hye (School of Chemical and Biological Engineering, Seoul National University) ;
  • Song, In-Kyu (School of Chemical and Biological Engineering, Seoul National University)
  • 서정길 (서울대학교 화학생물공학부) ;
  • 윤민혜 (서울대학교 화학생물공학부) ;
  • 송인규 (서울대학교 화학생물공학부)
  • Published : 2009.03.31

Abstract

Mesoporous aluminas (A-C, A-A, and A-N) were prepared by a templating method using cationic(C), anionic(A), and non-ionic(N) surfactant as a structure-directing agent, respectively. Nickel catalysts supported on mesoporous alumina (Ni/A-C, Ni/A-A, and Ni/A-N) were then prepared by an impregnation method, and were applied to hydrogen production by steam reforming of liquefied natural gas (LNG). Regardless of surfactant type, nickel species were finely dispersed on the surface of mesoporous alumina in the calcined catalysts. It was revealed that interaction between nickel species and support in the reduced catalysts was strongly dependent on the identity of surfactant. LNG conversion and $H_2$ composition in dry gas increased in the order of Ni/A-C < Ni/A-A < Ni/A-N. It was found that catalytic performance increased with increasing nickel surface area in the reduced catalyst. Among the catalyst tested, Ni/A-N catalyst with the highest nickel surface area showed the best catalytic performance.

양이온성(C), 음이온성(A) 및 비이온성(N) 계면활성제 각각을 주형물질로 사용하여 중형기공성 알루미나 (A-C, A-A 및 A-N)를 제조한 후, 이를 담체로 활용하여 일반적인 함침법으로 담지 니켈촉매(Ni/A-C, Ni/A-A 및 Ni/A-N)를 제조하였으며, 이를 액화천연가스의 수증기 개질반응에 의한 수소 제조에 적용하였다. 소성된 촉매에서 니켈종은 계면활성제의 종류에 상관없이 중형기공성 알루미나 담체의 표면에 균일하게 분산되었다. 하지만 환원된 촉매에서 니켈과 알루미나 담체 간의 상호작용 세기는 계면활성제의 종류에 밀접하게 의존하였다. 액화천연가스 전환율 및 건가스 중 수소가스 조성은 Ni/A-C < Ni/A-A < Ni/A-N의 순으로 증가하였다. 환원된 촉매 상의 니켈 비표면적이 증가할수록 반응활성 역시 증가하는 것으로 나타났으며, 제조된 촉매중에서 니켈 비표면적이 가장 높은 Ni/A-N 촉매가 가장 높은 반응환성을 나타내었다.

Keywords

References

  1. Schrope, M., "Which Way to Energy Utopia," Nature, 414, 682-684 (2001). https://doi.org/10.1038/414682a
  2. Ko, J. D., Lee, J. K., Park, D., and Shin, S. H., "Kinetics of Steam Reforming over a Ni/Alumina Catalyst," Korean J. Chem. Eng., 12, 478-480 (1995). https://doi.org/10.1007/BF02705814
  3. Seo, J. G., Youn, M. H., Park, S., Lee, J., Lee, S. H., Lee, H., and Song, I. K., "Hydrogen Production by Steam Reforming of LNG over Ni/Al_2O_3-ZrO_2$ Catalysts: Effect of $ZrO_2$ and Preparation Method of Al_2O_3-ZrO_2$," Korean J. Chem. Eng., 25, 95-95 (2008). https://doi.org/10.1007/s11814-008-0016-3
  4. Rostrup-Nielsen, J. R, "New Aspects of Syngas Production and Use," Catal. Today, 63, 159-164 (2000). https://doi.org/10.1016/S0920-5861(00)00455-7
  5. Rostrup-Nielsen, J. R., Sehested, J., and Norskov, J. K., "Hydrogen and Synthesis Gas by Steam- and $CO_2$ Reforming," Adv. Catal, 47, 65-139 (2002). https://doi.org/10.1016/S0360-0564(02)47006-X
  6. Sehested, J., Gelten, A. P., Remediakis, I. N., Bengaard, H., and Narskov, J. K., "Sintering of Nickel Steam-reforming Catalysts: Eifects of Temperature, Steam and Hydrogen Pressures," J. Catal., 223, 432-443 (2004). https://doi.org/10.1016/j.jcat.2004.01.026
  7. Lisboa, J. S., Santos, D. C. R M. Passos, F. B., and Noronha, F. B., "Influence of the Addition of Promoters to Steam Reforming Catalysts," Catal. Today, 101, 15-21 (2005). https://doi.org/10.1016/j.cattod.2004.12.005
  8. Chen, I., and Chen, F., "Effect of Alkali and Alkaline-earth Metals on the Resistivity to Coke Formation and Sintering of Nickel-alumina Catalysts," Ind. Eng. Chem. Res., 29, 534-539 (1990). https://doi.org/10.1021/ie00100a006
  9. Suh, D. J., Park, T. -J., Kim, J. -H., and Kim, K. -L., "Fast Sol-gel Synthetic Route to High Surface Area Alumina Aerogels," Chem. Mater., 9, 1903-1905 (1997). https://doi.org/10.1021/cm970170j
  10. Seo, J. G, Youn, M. H., Cho, K. M., Park, S., and Song, I. K., "Hydrogen Production by Steam Reforming of Liquefied Natural Gas over a Nickel Catalyst Supported on Mesoporous Alumina Xerogel," J. Power Sources, 173, 943-949 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.064
  11. Kim, J. -H., Suh, D. J., Park, T. -J., and Kim, K. -L., "Effect of Metal Particle Size on Coking during $CO_2$ Reforming of CHt over Ni-alumina Aerogel Catalysts," Appl. Catal. A: Gen., 197, 191-200 (2000). https://doi.org/10.1016/S0926-860X(99)00487-1
  12. Ray, J. C, You, K. -S., Ahn, J. -W., and Ahn, W. -S., "Mesoporous Alumina (I): Comparison of Synthesis Schemes Using Anionic, Cationic, and Non-ionic Surfactants," Micropor. Mesopor. Mater., 100, 183-190 (2007). https://doi.org/10.1016/j.micromeso.2006.10.036
  13. Valange, S., Guth, J. -L., Kolenda, F., Lacombe, S., and Gabelica, Z., "Synthesis Strategies Leading to Surfactant-assisted Aluminas with Controlled Mesoporosity in Aqueous Media," Micropor. Mesopor. Mater., 35, 591-607 (2000).
  14. Yada, M., Hiyoshi, H., Ohe, K., Machida, M., and Kijima, T., "Synthesis of Aluminum-based Surfactant Mesophases Morphologically Controlled through a Layer to Hexagonal Transition," Inorg. Chem., 36, 5565-5569 (1997). https://doi.org/10.1021/ic970292d
  15. Vaurdy, F., Khodabandeh, S., and Davis, M. E., "Synthesis of Pure Alumina Mesoporous Materials," Chem. Mater., 8, 1451-1464 (1996). https://doi.org/10.1021/cm9600337
  16. Bagshaw, S. A, and Pinnavaia, T. J., "Mesoporous Alumina Molecular Sieves," Angew. Chem. Int. Ed., 35, 1102-1105 (1996). https://doi.org/10.1002/anie.199611021
  17. Yang, P., Zhao, D., Margolese, D. I., Chmelka, B. F., and Stucky, G. D., "Generalized Syntheses of Large-pore Mesoporous Metal Oxides with Semicrystalline Frameworks," Nature, 396, 152-155 (1998). https://doi.org/10.1038/24132
  18. Seo, J. G, Youn, M. H., Park, S., Jung, J. C, Kim, P., Chung, J. S., and Song, I. K, "Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) over Nickel Catalysts Supported on Cationic Surfactant-templated Mesoporous Aluminas," J. Power Sources, 186, 178-184 (2009). https://doi.org/10.1016/j.jpowsour.2008.09.071
  19. Seo, J. G., Youn, M. H., Park, S., Park, D. R., Jung, J. C, Chung, J. S., and Song, I. K., "Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) over Mesoporous Nickel-alumina Composite Catalyst Prepared by an Anionic Surfactant-templating Method," Catal. Today, 10.1016/j.cattod. 2008.12.008.
  20. Seo, J. G, Youn, M. H., and Song, I. K., "Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) over Nickel Catalyst Supported on Mesoporous Alumina Prepared by a Non-ionic Surfactant-templating Method," Int. J. Hydrogen Energ., 34, 1809-1817 (2009). https://doi.org/10.1016/j.ijhydene.2008.12.031
  21. Pelletier, L., and Liu, D. D. S., "Stable Nickel Catalysts with Alumina-aluminum Phosphate Supports for Partial Oxidation and Carbon Dioxide Reforming of Methane," Appl. Catal. A. Gen., 317, 293-298 (2007). https://doi.org/10.1016/j.apcata.2006.10.028
  22. Kim, P., Kim, Y., Kim, H., Song, I. K., and Yi, J., "Preparation, Characterization, and Catalytic Activity of NiMg Catalysts Supported on Mesoporous Alumina for Hydrodechlorination of o-dichlorobenzene," J. Mol. Catal. A: Chem., 231, 247-254 (2005). https://doi.org/10.1016/j.molcata.2005.01.018
  23. Seo, J. G, Youn, M. H., Cho, K. M., Park, S., Lee, S. H., Lee, J., and Song, I. K., "Effect of $Al_2O_3-ZrO_2$ Xerogel Support on the Hydrogen Production by Steam Reforming of LNG over $Ni/Al_2O_3-ZrO_2$ Catalyst," Korean J. Chem. Eng, 25, 41-45 (2008). https://doi.org/10.1007/s11814-008-0007-4
  24. Bengaard, H. S., Norskov, J. K, Sehested, J., Clause, B. S., Nielsen, L. P., Molenbroek, A. M., and Rostrup-Nielsen, J. R., "Steam Reforming and Graphite Formation on Ni Catalysts," J. Catal, 209, 365-384 (2002). https://doi.org/10.1006/jcat.2002.3579
  25. Matsumura, Y., and Nakamori, T., "Steam Reforming of Methane over Nickel Catalysts at Low Reaction Temperature." Appl. Catal. A: Gen., 258, 107-114 (2004). https://doi.org/10.1016/j.apcata.2003.08.009
  26. Trimm, D. L., "The Steam Reforming of Natural Gas: Problems and Some Solutions," Stud. Surf. Sci. Catal, 36, 39-50 (1987).