DOI QR코드

DOI QR Code

Iron fortification of grains by introducing a recombinant gene of ferritin with seed promoters in rice

종자 특이 프로모터와 대두 Ferritin 유전자에 의한 벼 종실의 철분강화

  • Cho, Yong-Gu (Department of Crop Science, Chungbuk National University) ;
  • Kim, Hyung-Keun (Department of Crop Science, Chungbuk National University) ;
  • Choi, Jang-Sun (Department of Horticulture, Hankyong National University) ;
  • Jung, Yu-Jin (Department of Horticulture, Hankyong National University) ;
  • Kang, Kwon-Kyoo (Department of Horticulture, Hankyong National University)
  • Published : 2009.03.31

Abstract

The recombinant DNAs, pGBF, pGTF, and pZ4F, using soybean ferritin gene have constructed with the promoters derived from seed proteins, glutelin, globulin, and zein. The recombinant ferritin genes were transformed into rice plant by Agrobacterium-mediated transformation. Iron contents and agronomic traits have been evaluated in the transgenic progenies. The embryogenic calli survived from second selection medium were regenerated at the rates of 19.2% with pGBF, 15.0% with pGTF, and 18.4% with pZ4F in Donganbyeo and 6.7% with pGBF, 11.7% with pGTF, and 3.4% with pZ4F in Hwashinbyeo. The introduction of ferritin gene in putative transgenic rice plants was confirmed by PCR and Southern blot analysis and also the expression of ferritin gene was identified by Northern blot and Western blot analysis. The iron accumulation in transgenic rice grains of the transgenic rice plant, T1-2, with zein promoter and ferritin gene contained 171.4 ppm showing 6.4 times higher than 26.7 ppm of Hwashinbyeo seed as wild type rice, but the transgenic plants with globulin and glutelin showed a bit higher iron contents with a range from 2.1 to 3.0 times compare to wild type grain. The growth responses of transgenic plants showed the large variances in plant height and number of tillers. However, there were some transgenic plants having similar phenotype to wild type plants. In the T1 generation of transgenic plants, plant height, culm length, panicle length, and number of tillers were similar to those of wild type plants, but ripened grain ratio ranged from 53.3% to 82.2% with relatively high variation. The transgenic rice plants would be useful for developing rice varieties with high iron content in rice grains.

Ferritin 유전자를 벼의 저장기관인 배유에 특이적으로 발현시킬 수 있는 glutelin, gGlobulin 및 zein 프로모터를 활용하여 쌀알에 최대로 발현시켜, 고부가가치를 가진 가공용 벼 품종을 육성하여 천연의 철 성분이 강화된 유아용 이유식 생산에 이용할 수 있으므로 유아들에게 천연의 철분을 안정적으로 공급할 수 있는 형질전환체를 육성하였다. 종자 저장단백질인 glutelin, globulin 및 zein의 프로모터와 ferritin 유전자를 pMJ21 vector에 pGBF, pGTF 및 pZ4F 등의 Ti-plasmid를 Agrobacterium에 도입하여 동안벼와 화신벼에 형질전환 하였다. 동안벼 종자를 사용하였을 때 pGBF 재조합 유전자는 19.2%, pGTF는 15.0%, pZ4F는 18.4%가 재분화되었고, 화신벼 종자를 사용하였을 때에는 pGBF 재조합 유전자는 6.7%, pGTF는 11.7%, pZ4F는 3.4%가 재분화되었다. 형질전환 벼의 ferritin 유전자의 도입여부는 PCR 분석과 Southern 분석으로 확인하였으며 ferritin 유전자의 유전자 발현은 Norihern 및 Western 분석에 의해 확인하였다. Southern blot 분석 결과로부터 각각의 배유특이 프로모터 유래 형질전환체 중에서 single copy로 도입된 개체를 선발 할 수 있었다. 또한 이들 형질전환 계통들에서 도입유전자의 발현량은 wild type 벼에 비하여 매우 높게 나타났다. 또한 철 단백질의 철분 축적 정도를 분석한 결과 Zein 프로모터를 사용한 형질전환 계통 (T1-2)에서 171.4 ppm으로 wild type과 비교하여 6.4 배의 철분함량 증가를 보였다. 그러나 globulin 및 glutelin 프로모터 유래 형질전환체에서는 wild type과 비교하여 $2.1{\sim}3.0$ 배의 철분함량 증가를 보였다. 벼 형질전환체들의 생육상황을 조사한 결과 초장은 변이 폭이 매우 크게 나타났으며, 대조품종과 비교하여 50%정도 감소한 왜성 및 이형 식물체도 출현되었다. 따라서 본 연구에서는 형질전환체 중에서 표현형 적으로 대조품종과 거의 같은 식물체를 선발하여 후대를 육성하였다. 육성한 T1 세대에서 형질전환체의 초장, 간장, 수장, 분얼수 및 등숙률을 조사한 결과 초장, 간장, 수장, 분얼수에 있어서는 대조 품종과 큰 변이를 보이지 않았으나 등숙률에 있어서는 $53.3{\sim}82.2%$의 비교적 큰 변이를 나타내었다.

Keywords

References

  1. Church GM and Gilbert W. (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991-1995 https://doi.org/10.1073/pnas.81.7.1991
  2. Crichton R. R, Ponce-Ortiz Y, Koch MHJ Parfait R, Stuhrmann HB (1978) Isolation and characterization of phytoferritin from pea and lentil. Biochem J 171:349-356 https://doi.org/10.1042/bj1710349
  3. Dickey LF, Wang YH, Shull GE, Wortman IA, Theil EC (1988). The importance of the 3'-untranslated region in the translational control of ferritin mRNA. J Biol Chem 263:3071-3074
  4. Finnegan J. and McElroy D. (1994) Transgene inactivation: plants fight back. Bio/technology 12:883-888 https://doi.org/10.1038/nbt0994-883
  5. Goto, F, Yoshihara, T, Shigemoto, N, Toki, S, Takaiwa, F. (1999) Iron fortification of rice seed by the soybean ferritin gene. Nature Biotech 17:282-286 https://doi.org/10.1038/7029
  6. Harrison PM, Artymiuk PJ, Ford GC, Lawson DM, Smith JMA, Treffry A, White JL (1989) function and structural design If an iron-storage protein, In: Mann S, Webb J, Williams RJP (eds) Biomineralization: Chemical and Biomedical perspectives, pp 257-294. VCN, Weinheim
  7. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant J 6:271-282 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  8. Jang I-C, Pahk Y-M, Song SI, Kwon HJ, Nahm BH, Kim J-K (2003) Structure and expression of the rice class-I type histone deacetylase genes OsHDAC1,2 and 3: OsHDAC1 overexpression in transgenic plants leads to increased growth rate and altered architecture. Plant J 33:531-541 https://doi.org/10.1046/j.1365-313X.2003.01650.x
  9. Jones JDG, Dunsmuir P, Bedbrook J (1985) High level of expression of introduced chimeric genes in regenerated transformed plants. EMBO J. 4:2411-2418
  10. Kim YH, Lee YO, Nou IS, Kang HW, Kameya T, Sait T, Kang KK (1998) Isolation and characterization of a cDNA (Fpl) encoding the iron storage protein in red pepper. Plant Res 1(1): 6-10
  11. Kim, Seong Ha, II Sup Nou, Chang Sun Choi, Kwon Kyoo Kang (2001) Transformation of Lettuce (Lactuce Sativa L.) Using Iron Storage Protein. Korean J Plant Tissue Culture 28(3): 147-151
  12. Koeller DM, Casey JL, Hentze MW, Gerhardt EM, Chan LN, Klausner RD, Harford JB (1989) A cytosolic protein binds tstrutural elements within the iron regulatory region of the transferritin receptor mRNA. Proc Natl Acad Sci USA 86:3574-3578 https://doi.org/10.1073/pnas.86.10.3574
  13. Leibold EA. MunrHN (1988) Cytoplasmic protein binds in vitrta highly conserved sequence in the 5' untranslated region of ferritin heavy and light subunit mRNAs. Proc Natl Acad Sci USA 85:2171-2175 https://doi.org/10.1073/pnas.85.7.2171
  14. Lobreaux S. and Briat J. (1991) Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem. J. 274:601-606 https://doi.org/10.1042/bj2740601
  15. Lobreaux S, Massenet O. and Briat J. (1992) Iron induces ferritin synthesis in maize plantlets. Plant Molecular Biology 19:563-575 https://doi.org/10.1007/BF00026783
  16. Mlynarova L, Jansen RC, Conner AJ, Stiekema WJ, and Nap JP (1995) The MAR-mediated reduction in position effect can be uncoupled from copy number dependent eaaression in transgenic plants. Plant Cell 7:599-609 https://doi.org/10.1105/tpc.7.5.599
  17. Murashige T. and Skoog F. (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:474-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  18. Ragland M, Briat JF, Gagnon J, Laulhere JP, Massenet O, Theil EC (1990) Evidence for a conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J. Biol Chem 265:18339-18344
  19. Rouault TA, Teng CK, Kaptain S, Burgess WH, Haile DJ, Samanieg F, Mc Bridge OW, Harford JB, Klausner RD (1990) Cloning of the cDNA encoding an RNA regulatory protein-the human ironresponsive element-binding protein. Proc Natl Acad Sci USA 87:7958-7962 https://doi.org/10.1073/pnas.87.20.7958
  20. Sambrook J and Russell DW (2001) Molecular Cloning, 3rd edition. Cold Spring Harbor Laborato Press, Cold Spring Harbor, NY, USA
  21. Schernthaner, J.P., Matzke, M.A., and Matzke, A.J.M. (1988) Endosperm-specific activity of a zein gene promoter in transgenic tobacco plants. EMBO J. 7:1249-1255
  22. Spence MJ, Henzl MT, Lammers PJ (1991) The structure of a Phaseolus vulgaris cDNA encoding the iron storage ferritin. Plant Mol Biol 117:499-504 https://doi.org/10.1007/BF00040644
  23. Spiker, S. and Thompson, W.F. (1996) Nuclear Matrix Attachment Regions and transgene expression in plants. Plant Physiol. 110:15-21 https://doi.org/10.1104/pp.110.1.15
  24. Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants and microorganisms. Annu Rev Biochem 56:289-315 https://doi.org/10.1146/annurev.bi.56.070187.001445
  25. Theil EC (1990) Regulation of ferritin and transferritin receptor mRNAs. J Biol Chem 265.4771-4774
  26. Vain P, Worland B, Clarke MC, Richard G, Beavis M. Kohli A, Leech M, Snape JW, Atkinson H and Christou P (1998) Expression of an engineered cysteine proteinase inhibitor (oryzacystatin-I$\bigtriangleup$d86) for nematode resistance in transgenic rice plants. Theoretical and Applied Genetics 96:266-271 https://doi.org/10.1007/s001220050735
  27. Van Cam, W, Capiau K, Van Montagu M, Inze' D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703-1714 https://doi.org/10.1104/pp.112.4.1703
  28. Walden WE, PatinMM, Gaffeld L (1989) Purification of a specific represser ferritin mRNA translation from rabbit liver. J BilChem 264:13765-13769
  29. WHO (1992) The prevalence of anemia in women: a tabulation of available information. 2nd ed. WHO/MCI-I/MSM 92,2. Geneva
  30. WHO, Wu, Chuan-Yin, Adachi T, Hatano T, Washida H, Suzuki A and Takaiwa F. (1998) Promoters of Rice Seed Storage Protein Genes Direct Endosperm-Specific Gene Expression in Transgenic Rice. Plant Cell Physiol 39:885-889 https://doi.org/10.1093/oxfordjournals.pcp.a029449