DOI QR코드

DOI QR Code

Establishment of suspension culture condition for embryogenic callus proliferation and somatic embryo development of Kalopanax septemlobus

음나무 배발생 캘러스의 증식 및 체세포배 발달을 위한 액체 현탁 배양조건 확립

  • Kim, Sun-Ja (Biotechnology Division, Korea Forest Research Institute) ;
  • Moon, Heung-Kyu (Biotechnology Division, Korea Forest Research Institute)
  • 김선자 (국립산림과학원 산림유전자원부 생물공학과) ;
  • 문흥규 (국립산림과학원 산림유전자원부 생물공학과)
  • Published : 2009.03.31

Abstract

This study was conducted to establish the optimal suspension culture system for both the propagation of embryogenic cells (ECs) and the induction of somatic embryos (SEs) of Kalopanax septemlobus. The proliferation rate of ECs was reduced as the inoculum density was increased; the highest rate was obtained when 0.1 g/100 ml of cells was initially inoculated. According to the analysis of cell growth pattern and cell growth cycle (G1, Sand G2/M), the cell growth started in 5 days culture initiation, grew rapidly until 15 days and then decreased gradually. Distinctive changes of the cell growth cycle by the culture periods was also observed; the growth cycle was doubled from initial 5.6% to 11.7% of S stage in 5 days culture and then reached in stable stages again. Therefore, the results indicated that a 15-day-cycle was the optimal culture period for the propagation of the ECs through the suspension culture. Furthermore, the cell inoculum density was also important for the induction of SE; more than 65% of SEs at the torpedo stage was induced by using the low level of cell inoculum (0.5 g/L), while the higher inoculum densities were rapidly reduced the proportion of SEs at that stage. Although the higher inoculum density delayed the development of SE, it did not affect the proportion of SEs at the globular and heart stage. In conclusion, this study showed that the suspension culture of the Kalopanax septemlobus ECs through the control of inoculum density was an efficient way for both the propagation of ECs and the induction of SEs, suggesting that the development of this system might help to reduce the culture period for the somatic embryo production.

본 실험은 음나무 배발생 세포의 증식 및 체세포배 발달을 위한 액체 현탁 배양조건의 확립을 위해 수행되었다. 배발생 세포의 생장율은 접종 밀도가 증가할수록 감소하였다. 배발생 세포의 증식에 가장 효과적인 접종 밀도는 0.1 g/100 ml 로서 이 농도에서 세포의 생장율이 가장 높았다. 배양기간에 따른 배발생 세포의 생장 패턴 및 세포 주기 (G1, S, G2/M) 분석 결과, 세포의 생장은 배양 5일 후부터 증가가 시작되어 15일 까지 급격히 생장하였으며 그 이후에는 점차 감소하였다. 배양 기간 별 세포 주기 (cell cycle)의 변화가 명확하게 관찰되어 배양 5일째 5기는 초기의 5.5% 에서 11.7%로 두 배정도 증가하였으며, 배양 15일 이후부터는 다시 초기의 세포 주기로 되돌아가면서 안정화되는 것으로 나타났다. 따라서 음나무 배발생 세포의 현탁배양은 15일의 주기로 배양하는 것이 증식에 가장 효과적인 것으로 생각되었다. 한편 배발생 세포에서 체세포배의 유도는 배양초기의 접종 밀도가 중요한 것으로 나타났다. 0.5 g/L 의 낮은 밀도로 접종 시에는 65% 이상의 어뢰형 배가 유도된 반면 접종 밀도가 높아질수록 어뢰형으로의 배발달은 급격히 감소하였다. 초기의 접종 밀도가 증가할수록 특히 어뢰형 배의 발달은 지연되었으나 구형 및 심장형 배의 유도는 초기 접종밀도에 영향을 받지 않았다. 이상의 실험결과로 음나무 액체 배양 시 초기 접종 밀도를 조절함으로써 배발생 캘러스의 증식 및 체세포배를 효과적으로 유도할 수 있었으며 이는 체세포배 생산을 위한 배양 기간의 단축이 가능함을 보여주는 결과이다.

Keywords

References

  1. 채영복, 김완주, 지옥표, 안미자, 노영주 (1988) 한국유용식물자원 연구편람. 한국화확연구소 pp 122
  2. Akalezi CO, Uu S, Lig QS, Yu JT, Zhong JJ (1999) Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension culture of Panax ginseng. Proc Biochem 34:639-642 https://doi.org/10.1016/S0032-9592(98)00132-0
  3. Chakrabarty D, Yu KW, Paek KY (2003) Detection of DNA methylation changes during somatic embryogenesis of siberian ginseng (Eleuterococcus senticosu). Plant Sci 165:61-68 https://doi.org/10.1016/S0168-9452(03)00127-4
  4. Choi YE, Kim JW, Kim YS, Yoon ES (1999) High frequency of plant prodction via somatic embryogenesis from callus or cell suspension cultures in Eleutherococcus senticoccus. Annals Bot 83:309-314 https://doi.org/10.1006/anbo.1998.0827
  5. Contin A, Heijden R, Ten Hoopen HJG, Verpoorte R (1998) The inoculum size triggers tryptamine or secologanin biosynthesis in a Catharanthus roseus cell culture. Plant Sci 139: 205-211 https://doi.org/10.1016/S0168-9452(98)00188-5
  6. Hu WW, Yao H, Zhong JJ (2001) Improvement of Panax notoginseng cell culture for production of ginseng saponin and polysaccharide by high density cultivation in pneumatically agitated bioteactors. Biotechnol Prog 17:838-846 https://doi.org/10.1021/bp010085n
  7. Kanokwaree K, Doran PM (1997) Effect of inoculum size on growth of Atropa belladonna hairy roots in shake flasks. J Ferment Bioeng 84:378-381 https://doi.org/10.1016/S0922-338X(97)89266-5
  8. Kim YS (2002) Production of ginsenosides through bioreactor cultures of adventitious roots in ginseng (Panax ginseng C.A. Meyer). PhD thesis, Chungbuk National University, Cheongju
  9. Lee JS, Kim CK, Kim IS, Lee EJ, Choi HK (2006) In vitro regeneration of Phragmites australis throgh embyogenic cultures. J. Plant Biotechnol 8(1):21-25
  10. Masako A, Hiroji S (2002) Induction of proembryos in liquid culture increases the efficiency of plant regeneration from Alstroemeria calli. Plant Sci 163:475-479 https://doi.org/10.1016/S0168-9452(02)00146-2
  11. Moon HK, Kim SH, Kim BK (2002) Micropropagation of Kalopanax pictus Nakai via axillaiy bud culture. J Kor Forest Soc 91:775-780
  12. Moon HK, Kim YW, Lee JS, Choi YE (2005) Micropropagation of Kalopanax pictus tree via somatic embryogenesis. In Vitro Cell Dev Biol-Plant 41:303-306 https://doi.org/10.1079/IVP2004608
  13. Moon HK, Park SY, Kim YW, Kim SH (2008) Somatic embryogenesis and plantlet production using rejuvenated tissues from serial grafting of a mature Kalopanax septemlobus tree. In Vitro Cell Dev BioI-PIant 44:119-127 https://doi.org/10.1007/s11627-008-9122-5
  14. Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473-479 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  15. Osuga K, Kamada H, Komamine A (1993) Cell density is an important factor for synchronization of the late stage of somatic embiyogenesis at high frequency. Plant Tiss Cult Lett 10:180-183 https://doi.org/10.5511/plantbiotechnology1984.10.180
  16. Paek KY, Chakrabarty D (2003) Micropropagation of woody plants using bioreactor. In: Jain SM, Ishii K (eds). Micropropagation of woody trees and fruits. Kluwer Academic Publisher, The Netherlands. pp 735-756
  17. Shohael AM, Chakarabarty D, YU KW, Hahn EJ, Paek KY (2005) Application of bioreactor system for large-scale production of Eleutherococcus sessiliflorus somatic embryos in an air-lift bioreactor and production of eleutherosides. J Biotechnol 120:228-236 https://doi.org/10.1016/j.jbiotec.2005.06.010
  18. Thiruvengadam M, Varisai Mohamed S, Yang CH, Jayabalan N (2006) Development of an embryogenic suspension culture of bitter melon (Momordica charantia L). Sci Hort 109: https://doi.org/10.1016/j.scienta.2006.03.012
  19. Winkelmann T, Sangwan RS, Schwenkel HG (1998) Flow cytometric analyses in embryogenic and non-embryogenic calus lines of Cyclamen persicum Mill.: relation between ploidy level and competence for somatic embryogenesis. Plant Cell Rep 17:400-404 https://doi.org/10.1007/s002990050414
  20. Yeung EC (1999) The use of histology in the study of plant tissue cultures systems-some practical comments, In Vitro Cell Dev Biol-Plant 35:137-143 https://doi.org/10.1007/s11627-999-0023-z
  21. Yeoung YR, Lee MH, Kim BS, Kim HK, Kim JH (2001) Seed germination and softwood cutting technique of Kalopanax pictus Nakai. Kor J Plant Res 14:53-59
  22. Zhong JJ, Bai Y, Wang SJ (1996) Effects of plant growth regulators on cell growth and ginsenoside saponin production by suspension cultures of Panax quinquefolium. J Biotechnol 45:227-234 https://doi.org/10.1016/0168-1656(95)00170-0
  23. Zhu ML, Yang JW, Yu Y, Uu SJ (2007) Efficient organogenesis and plantlet regeneration in the timber species Cunninghamia lanceolata (Lamb.) Hook. In Vitro Cell Dev Biol-Plant 43:449-455 https://doi.org/10.1007/s11627-007-9092-z

Cited by

  1. Somatic embryogenesis and plant regeneration from a 700-year-old Kalopanax septemlobus tree vol.31, pp.5, 2017, https://doi.org/10.1007/s00468-017-1560-4
  2. Establishment of Suspension Culture System to Induce Somatic Embryo in Oplopanax elatus Nakai vol.20, pp.6, 2012, https://doi.org/10.7783/KJMCS.2012.20.6.461
  3. Somatic embryo induction and plant regeneration from cold-stored embryogenic callus ofK. septemlobus vol.42, pp.4, 2015, https://doi.org/10.5010/JPB.2015.42.4.388
  4. Enhanced biosynthesis of saponins by coronatine in cell suspension culture of Kalopanax septemlobus vol.8, pp.1, 2018, https://doi.org/10.1007/s13205-018-1090-9