$CO_2$ 환경에서의 참문어의 급성 독성반응

Acute Toxic Responses of Octopus vulgaris to $CO_2$ Environment

  • 이경선 (목포해양대학교 해양시스템공학부)
  • Lee, Kyoung-Seon (Division of Ocean System Engineering, Mokpo National Maritime University)
  • 발행 : 2009.03.31

초록

이산화탄소($CO_2$) 해양격리처리 방안의 실효성을 검토하기 위해서는 해양에 처리된 $CO_2$가 해양생태계 및 해양생물에 미칠 수 있는 영향에 대해서 광범위하게 정보를 축적할 필요가 있다. 본 연구에서는 두족류인 참문어 Octopus vulgaris를 대상으로 고농도 $CO_2$ 환경(1, 2, 3%-$CO_2$)에서의 폐사율 및 1%-$CO_2$ 환경에서의 생리학적 반응에 대해서 조사하였다. 참문어는 혈액채취를 위하여 복부대동맥에 케뉴레이션을 행한 후 호흡실에서 회복시켰다. 회복된 개체에 대하여 헤모림프의 산염기 조절인자에 대한 측정을 행하였다. 참문어는 3%-$CO_2$ 환경에서 72시간 안에 100% 폐사하였다. 헤모림프의 pH는 1%-$CO_2$ 노출 30분 후 유의하게 감소하였으나 실험종료 때까지 회복되지 않았으며, $[HCO_3^-]$$CO_2$ 노출 후 유의하게 증가하여 8시간에 7.8 mM를 나타내었으나 그 후 점차 감소하는 경향이었다. 헤모림프 이온$([Cl^-],\;[Na^+],\;[K^+])$들은 유의한 변화를 보이지 않았다. 본 연구 결과 참문어는 방어, 넙치와 같은 경골어류 및 별상어와 같은 판새류보다 $CO_2$에 민감한 것으로 사료된다.

The proposal of the $CO_2$ ocean sequestration necessitates a thorough understanding of its consequences to aquatic organisms. This paper describes acute toxic responses to high $CO_2$ environment of a cephalopod, Octopus vulgaris. O. vulgaris was chronically cannulated in the abdominal aorta and recovered in a restrained chamber. Acid base variables as well as ion concentrations were estimated in samples of the blood collected from recovered O. vulgaris. 100% mortality occurred within 72h during exposure to 3%-$CO_2$ environment. Hemolymph pH significantly decreased after 30 min during exposure to 1%-$CO_2$ environment without any compensation thereafter. $[HCO_3^-]$ significantly increased from 2.2 mM at 0h to 7.8 mM at 8h, but gradually decreased thereafter. Hemolymph ions $([Cl^-],\;[Na^+],\;[K^+])$ showed no significant changes. O. vulgaris may be more sensitive than teleost, yellowtail, flounder and dogfish.

키워드

참고문헌

  1. 齊藤幸一郞(1972), 電解質としての血液. 齊藤幸一郞 (編), 酸鹽基平衡の基礎, 朝倉書店, 東京. pp. 1-20.
  2. Cameron, J. N.(1986), Acid-base equilibria in invertebrates in Acid-base Regulation in Animals (ed. N. Heisler), New York, Elsevier, pp. 357-394.
  3. Claiborne, J. B. and N. Heisler(1986), Acid-base regulation and ion transfers in the carp (Cyprinus carpio): pH compensation during graded long- and short-term environmental hypercapnia, and the effect of bicarbonate infusion. Journal of Experimental Biology, Vol. 126, pp. 41-61.
  4. Davenport, H. W.(1974), The ABC of acid-base chemistry, 6th edn. The University of Chicago Press, Chicago, pp. 39-41.
  5. Driedzic, W. R.(1985), Contractile performance of cephalopod hearts under anoxic conditions. Journal of Experimental Biology, Vol. 117, pp. 471-474.
  6. Hayashi, M., J. Kita and A. Ishimatsu(2004), Acid-base responses to lethal aquatic hypercapnia in three marine fish. Marine Biology, Vol. 144, pp. 153-160. https://doi.org/10.1007/s00227-003-1172-y
  7. Heisler, N.(1986), Acid-base regulation in fishes. in N. Heisler, ed., Acid-Base Regulation in Animals. Elsevier, Amsterdam, pp. 309-356.
  8. Hogan, E. M., M. A. Cohen and W. F. Boron(1995), $K^{+}\;and\;HCO_{3}^{-}$ dependent acid-base transport in squid giant axons. II. Base influx. Journal of General Physiology, Vol. 106, pp. 845-862. https://doi.org/10.1085/jgp.106.5.845
  9. Ishimatsu, A. and J. Kita(1999), Effects of environmental hypercapnia on fish. Japanese Journal of Ichthyology, Vol. 46, pp. 1-13.
  10. Johansen, K., O. Brix and G. Lykkeboe(1982), Blood gas transport in the cephalopod, Sepia officinalis. Journal of Experimental Biology, Vol. 99, pp. 331-338.
  11. Kita, J. and T. Ohsumi(2004), Perspectives on Biological Research for $CO_2$ Ocean Sequestration. Journal of Oceanography, Vol. 60, pp. 695-703. https://doi.org/10.1007/s10872-004-5762-1
  12. Lee, K. S., J. Kita and A. Ishimatsu(2003), Effects of lethal levels of environmental hypercapnia on cardiovascular and blood-gas status in yellowtail, Seriola quinqueradiata. Zoological Science, Vol. 20, pp. 417-422. https://doi.org/10.2108/zsj.20.417
  13. Lenfant, C. and K. Johansen(1965), Gas transport by hemocyanin-containing blood of the cephalopod Octopus dofleini. American Journal of Physiology, Vol. 209, pp. 991-998.
  14. McKenzie, D. J., E. W. Taylor, A. Z. Dalla Valle and J. F. Steffensen(2002), Tolerance of acute hypercapnic acidosis by the European eel (Anguilla anguilla). Journal of Comparative Physiology B, Vol. 172, pp. 339-346. https://doi.org/10.1007/s00360-002-0260-5
  15. Perry, S. F., R. Fritsche, T. M. Hoagland, D. W. Duff and K. R. Olson(1999), The control of blood pressure during external hypercapnia in the rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, Vol. 202, pp. 2177-2190.
  16. Prosser, C. L.(1950), Inorganic Ions. in Prosser C. L. and F. A. Brown, Jr. eds., Comparative Animal Physiology Second Edition. W. B. Saunders Company, London, pp. 57-80.
  17. Slyke Van, D. D., A. Hiller, R. A. Phillips, P. B. Hamilton, V. P. Dole, R. M. Archibald and H. A. Eder(1950), Journal of Biological Chemistry, Vol. 183, p. 331.
  18. Toews, D. P., G. F, Holeton and N. Heisler(1983), Regulation of the acid-base status during environmental hypercapnia in the marine teleost fish Conger conger. Journal of Experimental Biology, Vol. 107, pp. 9-20.
  19. Wells, M. J. and J. Wells(1982), The circulatory response to acute hypoxia in octopus. Journal of Experimental Biology, Vol. 104, pp. 59-71.