Preparation and Characterization of PAN/MWNT Nanofibers

PAN/MWNT 나노섬유의 제조와 특성 분석

  • Park, Ji-Hee (Department of Advanced Organic Materials and Textile System Engineering, School of Chemical and Biological Engineering, Chungnam National University) ;
  • Jee, Min-Ho (Department of Advanced Organic Materials and Textile System Engineering, School of Chemical and Biological Engineering, Chungnam National University) ;
  • Yoon, Yeo-Hoon (Department of Advanced Organic Materials and Textile System Engineering, School of Chemical and Biological Engineering, Chungnam National University) ;
  • Jeong, Young-Gyu (Department of Nano-Bio Textile Engineering, School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Baik, Doo-Hyun (Department of Advanced Organic Materials and Textile System Engineering, School of Chemical and Biological Engineering, Chungnam National University)
  • 박지희 (충남대학교 바이오응용화학부 유기소재.섬유시스템) ;
  • 지민호 (충남대학교 바이오응용화학부 유기소재.섬유시스템) ;
  • 윤여훈 (충남대학교 바이오응용화학부 유기소재.섬유시스템) ;
  • 정영규 (금오공과대학교 신소재시스템공학부 나노바이오텍스타일공학) ;
  • 백두현 (충남대학교 바이오응용화학부 유기소재.섬유시스템)
  • Published : 2009.02.28

Abstract

We have synthesized three different PAN copolymers with methyl acrylate (MA) and/or itaconic acid (IA) comonomers and carried out their chemical and compositional analyses. In addition, PAN and PAN/MWNT nanofibers were prepared by electrospinning PAN copolymer solutions with various MWNT contents and characterized their morphology and thermal behavior by using FE-SEM and DSC. It was found from SEM images that the PAN nanofiber with IA (2 mol%) comonomer has much smaller fiber diameter and narrower diameter distribution compared to PAN nanofibers with MA/IA (1/1 mol%) and MA (2 mol%) comonomers. For PAN/MWNT nanofibers, the fiber diameters were decreased with increasing the MWNT content. From DSC heating thermograms, it was revealed that the exothermic cyclization reactions started at lower temperatures for the PAN nanofiber with IA comonomer as well as for the PAN/MWNT nanofibers with higher MWNT contents. Overall, it was valid to conclude that the IA comonomer and the MWNT content contribute to the smaller fiber diameters and the lower temperature-initiated cyclization reactions of PAN/MWNT nanofibers which can be used as precursors for manufacturing activated carbon nanofibers.

Keywords

References

  1. I. G. Shin, S. H. Lee, and S. M. Park, 'A Study on the Synthesis and Characterization of Poly(Acryloniσile-Methyl acrylate-Itaconic acid) Initiated by Redox System in Zinc Chloride Solution', J Korean Fibεr Soc, 2000, 37, 493-499
  2. I. G. Shin, S. H. Lee, and S. M. Park, 'A Study on the Synthesis and Characterization of Poly(Acrylonitrile-Methyl acrylate-Itaconic acid) Initiated by Redox System in Zinc Chloride Solution(II)', J Korean Fiber Soc, 2001, 38, 265- 271
  3. M. M. Coleman and G. T. Sivy, ' Fourier Transform IR Studies of the Degradation of Polyacrylonitrile Copolymers', Carbon, 1981, 19, 559-570
  4. M. M. Coleman, G. T. Sivy, P. C. P:Paniter, R. W. Snyder, and B. Gordon, ' Studies of the Degradation of Acrylonitrile/ Acrylarnide Copolymers as a Function of Composition and Temperature', Carbon, 1983, 21, 255-267 https://doi.org/10.1016/0008-6223(83)90089-1
  5. D. H. Reneker, W. Kataphinan, A. Theron, E. Zussman, and A. L. Yarin, ' Nanofiber Garlands of Polycaprolactone by Electrospinning', Polymer, 2002, 42, 6785-6794
  6. T. V. Sreekumar,T. Liu, B. G. Min, H. Guo, S. Kumar, R. H. Hauge, and R. E. Smalley, ' Polyacrylonitrile SingleWalled Carbon Nanotube Composite Fibers' , Adv Mater, 2004, 16, 58-61 https://doi.org/10.1002/adma.200305456
  7. H. G. Chae, T. V. Sreekumar, T. Uchida, and S. Kumar, 'A Comparison of Reinforcement Efficiency of Various Types of Carbon Nanotubes in Polyacrylonitrile, Fiber', Polymer, 2005, 46, 10925-10935 https://doi.org/10.1016/j.polymer.2005.08.092
  8. H. G. Chae, M. L. Minus, and S. Kurnar, 'Oriented and Exfoliated Single Wall Carbon Nanotubes in Polyaαylonitrile',Polymer, 2006, 47, 3494-3504 https://doi.org/10.1016/j.polymer.2006.03.050
  9. T. Uchida and S. Kumar, ' Single Wall Carbon Nanotube Dispersion and Exfoliation in Polymers', J Appl Polym Sci, 2005, 98, 985-989 https://doi.org/10.1002/app.22203
  10. H. G. Chae, M. L. Minus, A. Rasheed, and S. Kumar, ' Stabilization and Carbonization of Gel Spun Polyacrylonitrile/ Single Wall Carbon Nanotube Composite Fibers', Polymer, 2007, 48, 3781-3789 https://doi.org/10.1016/j.polymer.2007.04.072
  11. K. Esurni, M. Ishigarni, A. Nakajima, K. Sawada, and H. Honda, ' Chemical Treatment of Carbon Nanotubes', Carbon, 1996, 34, 279-281 https://doi.org/10.1016/0008-6223(96)83349-5
  12. S. H. Lee, H. S. Kim, and S. M. Park, ' Effect of Polyvinylpyrrolidone on the Copolymerization of Acrylonitrile and Methylacrylate Initiated by Azobisisobutyronitrile in Dimethylformarnide Solution System', J Korean Fiber Soc, 1997, 34, 591-597
  13. R. J. Devasia, C. P. Reghunadhan Nair, and K. N. Ninan, ' Copolymerization of Acrylonitrile with Itaconic Acid in Dimethylformarnide: Effect of Triethylarnine', Euro Polym J, 2003, 39, 537-544 https://doi.org/10.1016/S0014-3057(02)00275-6
  14. P. Bajaj, T. V. Sreekurnar, and K. Sen, ' Effect of Reaction Medium on Radical Copolymerization Acrylonitrile with Vinyl Acids', J Appl Polym Sci, 2000, 9, 1640-1652
  15. I. G. Shin, S. H. Lee, and S. M. Park, 'A Study on Fiber Formation and Physical Properties of Polyacrylonitrile Copolymer with Itaconic Acid', J Korean Soc of Dyes and Finishers, 2002, 14, 33-39
  16. M. M. Coleman, G. T. Sivy, P. C. Paniter, R. W. Snyder, and B. Gordon III, ' Studies of the Degradation of Acrylonitrile/Acrylarmide Copolymers as a Fuction of Composition and Temperature', Carbon, 1983, 21, 255-267 https://doi.org/10.1016/0008-6223(83)90089-1
  17. W. Y. Qin, H. J. Huan, and Y. J. Young, 'Carbon NanotubeReinforced Polyacrylonitrile Nanofibers by VibrationElectrospinning', Polym Int, 2007, 56, 1367-1370 https://doi.org/10.1002/pi.2358
  18. K. Frank, G. Yury, A. Ashraf, N. Nevin, Y. Haihui, Y. Guoliang, L. Christopher, and W. Peter, 'Electrospinning of Continuous Carbon Nanotube-filled Nanofiber Yarns' , Advanced Materials, 2003, 15, 1161-1165 https://doi.org/10.1002/adma.200304955
  19. S.-H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, ' Systematic Parameter Study for Ultra-fine Fiber Fabrication via Electrospinning Process', Polymer, 2005, 46, 6128-6134 https://doi.org/10.1016/j.polymer.2005.05.068
  20. D. H. Baik, M. H. Jee, H. S. Lee, J. H. Lee, and S. W. Seo, ' Characterization of Electrospun Copolyetherester Nanocomposite Fibers', Text Sci Eng, 2006, 43, 298-304
  21. M. H. Jee, M. H. Lee, Y. H. Yoon, and D. H. Baik, ' Synthesis and Properties of Poly(ethylene 2,6-naphthalate)/ MWNT Nanocomposites Prepared by in situ Polymerization(l) -Synthesis and Characterization-', Text Sci Eng, 2008, 45, 26-32
  22. Q. Ouyang, L. Cheng, H. 1. Wang, and K. Li, 'Mechanism and Kinetics of the Stabilization Reactions of Itaconic Acidmodified Polyacrylonitrile', Polym Degrad Stabil, 2008, 93, 1415-1421 https://doi.org/10.1016/j.polymdegradstab.2008.05.021
  23. C. H. Gi, M. L. Minus, R. Asif, and K. Satish, ' Stabilization and Carbonization of Gel Spun Polyacrylonitrile/Singlewall Carbon Nanotube Composite Fibers', Polymer, 2007, 48, 3781-3789 https://doi.org/10.1016/j.polymer.2007.04.072
  24. J. J. Ge, H. Haoqing, L. Qing, M. J. Graham, G. Andreas, D. H. Reneker, F. W. Harris, and S. Z. D. Cheng, 'Assembly of Well-Aligned Multiwalled Carbon Nanotubes in Confined Polyacrylonitrile Environments: Electrospun Composite Nanofiber Sheets', J Am Chem Soc, 2004, 48, 15754-15761