DOI QR코드

DOI QR Code

실리콘 애벌런치 LED의 설계요소에 대한 분석

An Analysis of Design Elements of Silicon Avalanche LED

  • 이정용 (청주대학교 전자정보공학부)
  • Ea, Jung-Yang (School of Electronics & Information Engineering, Cheongju University)
  • 발행 : 2009.03.31

초록

반도체 소자의 축소로 인한 처리속도의 향상이 더욱 어려워지고 있다. 따라서 반도체 산업의 새로운 도약을 위해서 실리콘을 이용한 광전소자의 출현(Silicon photonics)이 더욱 절실해지고 있다. 제조의 간단성, 반복성, 안정성, 고속성, 일반실리콘 반도체 공정과의 병존성 등의 특성으로 인해 애벌런치 항복에 의한 발광 소자는 실리콘 발광소자의 구현에 유력한 후보 중의 하나이다. 애벌런치 발광현상에 대해 전기적, 광학적 측정을 하고, 간단한 모델링과 시뮬레이션을 통하여 발광부위의 형태, $n^{+}-p$ 접합의 깊이, 불순물의 농도, 에피층의 높이 등의 설계요소가 발광특성에 미치는 영향을 분석하였다. 시뮬레이션의 결과와 실제의 계측 결과를 비교하여, 차이점을 야기하는 이유, 애벌런치 항복의 발광현상을 설명하였고, 개선방안을 제시하였다.

It is becoming more difficult to improve the device operating speed by shrinking the size of semiconductor devices. Therefore, for a new leap forward in the semiconductor industry, the advent of silicon opto-electronic devices, i.e., silicon photonics is more desperate. Silicon Avalanche LED is one of the prospective candidates to realize the practical silicon opto-electronic devices due to its simplicity of fabrication, repeatability, stability, high speed operation, and compatibility with silicon IC processing. We conducted the measurement of the electrical characteristics and the observation of the light-emitting phenomena using optical microscopy. We analyzed the influence of the design elements such as the shape of the light-emitting area and the depth of the $n^{+}-p^{+}$ junction with simple device modeling and simulation. We compared the results of simulation and the measurement and explained the discrepancy between the results of the simulation and the measurement, and the suggestions for the improvement were given.

키워드

참고문헌

  1. L Pavesi, J. Phys.: Condens. Matter 15, R1169 (2003) https://doi.org/10.1088/0953-8984/15/26/201
  2. R. Newman, Phys. Rev. 100, 700, (1955) https://doi.org/10.1103/PhysRev.100.700
  3. T. H. Ning, Solid-State Electronics 21, 273, (1978) https://doi.org/10.1016/0038-1101(78)90148-X
  4. J. A. Burton, Phys. Rev. 108, 1342, (1957) https://doi.org/10.1103/PhysRev.108.1342
  5. Elliott Kohn, IEEE TRANS. ON ELECTRON DEV. 20, 321 (1973) https://doi.org/10.1109/T-ED.1973.17646
  6. G. G. P. van Gorkom and A. M. E. Hoeberechts, J. Vac. Sci. Technol. AS, 1544, (1987) https://doi.org/10.1116/1.574560
  7. Jung Y. Ea, B. Lalevic, Dazhong Zhu, Yicheng Lu, and Robert J. Zeto, IEEE ELEC. DEV. LET. 11, 403 (1990) https://doi.org/10.1109/55.62970
  8. Ivan Rech, REV. OF SCIENTIFIC INST. 78, 063105 (2007) https://doi.org/10.1063/1.2743167
  9. Hyo-Soon Kang, APP. PRY. LET. 90, 15118 (2007)
  10. Maria Eloisa Castagna, ESSDERC, 439 (2002)
  11. A. T. Fiory and N. M. Ravindra, J. of ELECTRONIC MATERIALS, 32, 1043 (2003) https://doi.org/10.1007/s11664-003-0087-1
  12. L. W. Snyman et al., Opt. Eng. 41, 3230 (2002) https://doi.org/10.1117/1.1520541
  13. Tao Huang, et al., Optical Engi. 44, 074001 (2005) https://doi.org/10.1117/1.1950087
  14. Salvatore Coffa, IEEE Spectrum, p.44, (2005)
  15. Andrea L. Lacaita, IEEE TRANS. ON ELECTRON DEV. 40, 577 (1993) https://doi.org/10.1109/16.199363
  16. 이병철, 정영욱, 박성희, 한상준, 한국진공학회지 15, 5호, 435(2006)
  17. Jung Y. Ea, Dazhong Zhu, Yicheng Lu, B. Lalevic, and Robert J. Zeto, IEEE TRANS. ON ELECTRON DEV., 38, 2377 (1991) https://doi.org/10.1109/16.88529
  18. M. Wang, Y. Lu, and B. Lalevic, J. Vac. Sci. Technol. B 11(2), 426 (1993) https://doi.org/10.1116/1.586876
  19. Y. Lu and M. Wang, B. Lalevic, IEEE TRANS. ON ELECTRON DEVI., 41, 439 (1994) https://doi.org/10.1109/16.275232
  20. 이정용, 한국진공학회지 16, 6호, 414 (2007)
  21. Ognian Marinov and M. Jamal Deen, J. OF APPLIED PHYSICS 101, 064515, (2007) https://doi.org/10.1063/1.2654973
  22. A. G. Chynoweth and K. G. McKay, Physical REV. 102, 369 (1956) https://doi.org/10.1103/PhysRev.102.369
  23. S. C. Sun and James D. Plummer, IEEE Tran. ED-27(2), 356 (1980)
  24. S. M. Sze, Physics of Semiconductor Devices (JOHN WILEY & SONS, 1981), pp. 73
  25. Monuko du Plessis, Herzl Aharonil and Lukas W. Snyman, Sensors and Actuators A: Physical 80, Issue 3, 242 (2000) https://doi.org/10.1016/S0924-4247(99)00316-7
  26. Monuko du Plessis, Herzl Aharoni, and Lukas W. Snyman, IEEE J. OF SELECTED TOPICS IN QUANTUM ELECTRONICS 8 1412 (2002) https://doi.org/10.1109/JSTQE.2002.806697