References
- Buschmann, A.H., M. Troell and N. Kautsky. 2001. Integrated algal farming;a review. Cah. Biol. Mar., 42, 83-90
- Cabello-Pasini, A., E. Aguirre-von-Wobeser and F.L. Figueroa. 2000. Photoinhibition of photosynthesis in Macrocystis pyrifera (Phaeophyceae), Chondrus crispus (Rhodophyceae) and Ulva lactuca (Chlorophyceae)in outdoor culture systems. J. Photochem. Photobio. B:Biology, 57, 169-178 https://doi.org/10.1016/S1011-1344(00)00095-6
- Carrnona, R., G.P. Kraemer and C. Yarish. 2006. Exploring Northeast American and Asian species of Porphyra for use in an integrated finfish-algal aquaculturesystem. Aquaculture, 252, 54-65 https://doi.org/10.1016/j.aquaculture.2005.11.049
- Chopin, T. and C. Yarish. 1998. Nutrients or not nutrients? That is the question in seaweed aquaculture and the answer depends on the type and purpose of the aquaculture system. World Aquaculture, 29, 31-33 https://doi.org/10.1111/j.1749-7345.1998.tb00297.x
- Chopin, T., C. Yarish, R. Wilkes, E. Belyea, S. Lu and A. Mathieson. 1999. Developing Porphyra/salmon integrated aquaculture for bioremediation and diversifi - cation ofthe aquaculture industry. J. Appl. Phycol., 11, 463-472 https://doi.org/10.1023/A:1008114112852
- Chopin, T., A.H. Buschmann, C. Halling, M. Troell, N. Kautsky, A. Neori, G.P. Kraemer, J.A. ZertucheGonzalez, C. Yarish and C. Neefus. 2001. Integratmgseaweeds into marine aquaculture system: a key toward sustainabi1ity. J. Phycol., 37, 975-986 https://doi.org/10.1046/j.1529-8817.2001.01137.x
- Dar, W.D. 1999. Sustainable aquaculture development and the code of conduct for responsible fisheries (http:// www.fao.org/waicent/faoinfo/fishery/meetings/minist/ 1999/dar.asp )
- Durako, M.J., J.I. Kunzelman, W.J. Kenworthy and K.K. Hammerstrom. 2003 Depth-related variability in the photobiology of two populations of Halophila johnsonii and Halophila decipiens. Mar. Biol., 142, 1219-1228 https://doi.org/10.1007/s00227-003-1038-3
- FAO. 2003. Review of the state of world aquaculture, Inland Water Resources and Aquaculture Service, FAO Fisheries Circular No. 886, Rev 2. Eectron edition http://www.fao.org/docrep/005/y4490e/y4490eOO.htm
- Figueroa, F.L., R. Santos, R. Conde-A1varez, L. Mata, J.L.G. Pinchetti, J. Matos, P. Huovinen, A. Schuenhoff and J. Silva. 2006. The use of chlorophyllfluorεs-cence for monitoring photosynthetic condition of two tank-cultivated red macroalgae using fishpond efflux-ents. Bot. Mar., 49, 275-282 https://doi.org/10.1515/BOT.2006.035
- Floreto, E.A.T., S. Teshima and M. Ishikawa. 1996. Effects of nitrogen and phosphorus on the growth and fatty acid composition of Ulva pertusa Kjellman(Chlorophyta). Bot. Mar., 39, 69-74 https://doi.org/10.1515/botm.1996.39.1-6.69
- Garcia-Ferris, C., A. de los Rios, C. Ascaso and J. Moreno. 1996. Correlated biochemical and ultrastructural changes in nitrogen-starved Euglena gracilis. J. Phycol., 32, 953-963 https://doi.org/10.1111/j.0022-3646.1996.00953.x
- Genty, B., J.M. Briantais and N.R. Baker. 1989. The relationship betweεn the quantum yield of photosynthetic e1ectron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta, 900, 87-92
- Harrison, P.J. and C.L. Hurd. 2001. Nutrient physiology of seaweed: application of concepts to aquaculture. Cah. Biol. Mar., 42, 71-82
- He, P., S. Xu, H. Zhang, S. Wen, Y. Dai, S. Lin and C. Yarish. 2008. Bioremedation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Res., 42, 1281-1289 https://doi.org/10.1016/j.watres.2007.09.023
- Hernandez, I., J.F. Martinez-Aragon, A. Tovar, J.L. Perez-Llorens and J.J. Vergara. 2002. Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroaglae cultivated with sea bass(Dicentrachus labrax) waste water. 2. Ammonium. J. Appl. Phycol., 14, 375-384 https://doi.org/10.1023/A:1022178417203
- Jimenez del Rio, M., Z. Ramazanou and G. Garcia-Reina. 1996. Ulca rigida(Ulcales, Chlorophyta)tank culture as biofilters for dissolved inorganic nitrogen from fishpond effluents. Hydrobiologia, 326/327, 61-66
- Jones, A.B., W.C. Dennison and N.P. Preston. 2001. Integrated treatment of shrimp effluent by sedimenta-tion, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture, 193, 155-178 https://doi.org/10.1016/S0044-8486(00)00486-5
- Jones, A.B., N.P. Preston and W.C. Dennison. 2002. The efficiency and condition of oysters and macroalgae used as biological filters of shrimps and effluent Aquac. Res., 33, 1-19
- Kang, Y.H., J.A. Shin, M.S. Kim and I.K. Chung. 2008. A preliminary study of the biorεmediation potential of Codiumfrα, :gile applied to seaweed integrated multitrophic aquacu1ture (lMTA) during the summer. J. Appl. Phycol., 20, 183-190 https://doi.org/10.1007/s10811-007-9204-5
- Korbee, N., P. Huovinen, F.L. Figueroa, J. Aguilera and U. Karsten. 2005. Availability of ammonium influences photosynthesis and the accumulation of mycosporinelike amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar. Biol., 146, 645-654 https://doi.org/10.1007/s00227-004-1484-6
- Kraemer, G.P., R. Carmona, T. Chopin, C. Neefus, X. Tang and C. Yarich. 2004. Evaluation of the bioremediatory potential of several species of the red alga Porphyrausing short-term measurements of nitrogen uptake as a rapid bioassay. J. Appl. Phycol., 16, 489-497 https://doi.org/10.1007/s10811-004-5511-2
- Lahaye, M., J.L. Gomez-Pinchetti, M. Jimenez del Rio and G. Garcia-Reina. 1995. Natural decoloration, compo-sition and increase in dictary fibre content of an edible marine algae, Ulca rigida(Chlorophyta), grown under different nitrogenconditions. J. Sci. Food Agric., 68, 99-104 https://doi.org/10.1002/jsfa.2740680116
- Lobban, C.S. and P.J. Harrison. 1994. The Physiological ecology of seaweeds. Cambridge University Press
- Longstaff, B.J., T. Kildea, J.W. Runcie, A. Cheshire, W.C. Dennison, C. Hurd, T. Kana, J.A. Raven and A.W.D. Larkum. 2002. An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalgae Ulva lactuca (Chlorophyta) Photosynth. Res., 74, 281-293 https://doi.org/10.1023/A:1021279627409
- Macinnis-Ng, C.M.O. and R. Ralph. 2003. ln situ impact of petrochemicals on the photosynthesis of the seagrass Zostera capricorni. Mar. Pollut. Bull., 46, 1395-1407 https://doi.org/10.1016/S0025-326X(03)00290-X
- Matos, J., S. Costa, A. Rodrigues, R. Pereira and I. Sousa Pinto. 2006. Experimental integrated aquaculture of fish and red seaweeds in Northern Portugal. Aquaculture, 252, 31-42 https://doi.org/10.1016/j.aquaculture.2005.11.047
- Naylor, R.L., R.J. Goldburg, J.H. Primavera, N. Kautsky, M.C.M. Beveridge, J. Clay, C. Folke, J. Lubchenco and M. Troell. 2000. Effect of aquaculture on world fish supplies. Nature, 405, 1017-1024 https://doi.org/10.1038/35016500
- Neori, A., I. Cohen and H. Gordin. 1991. Ulva lactuca biofilters for marine fishpond effluents II. Growth rate, yield and C:N ratio. Bot. Mar., 34, 483-489 https://doi.org/10.1515/botm.1991.34.6.483
- Neori, A., T. Chopin, M. Troell, A.H. Buschmann, G.P. Kraemer, C. Halling, M. Shpigel and C. Yarish. 2004. lntergrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofilteration in modern mariculture. Aquaculture, 231, 361-391 https://doi.org/10.1016/j.aquaculture.2003.11.015
- Peckol, P. and J .S. Rivers. 1995. Physiological responses of the opportunistic macroalgae Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (Mc-Lachlan) to environmental disturbances associated with eutrophication. J. Exp. Mar. Biol. Ecol., 190, 1-16 https://doi.org/10.1016/0022-0981(95)00026-N
- Pinchetti. J.L.G., E.C. Fernandez, P.M. Diez and G.G. Reina. 1998. Nitrogen availability influences the biochemical composition and photosynthesis of tank-cultivated Ulva rigida (Chlorophyta). J. Appl. Phycol., 10.383-389 https://doi.org/10.1023/A:1008008912991
- Platt, T., C.L. Gallegos and W.G. Harrison. 1980. Photo-inhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res., 38, 687-701
- Ralph, P.J. 2000. Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence. Aquat. Bot., 66, 141-152 https://doi.org/10.1016/S0304-3770(99)00024-8
- Ralph, P.J. and R. Gademann. 2005. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot., 82, 222-237 https://doi.org/10.1016/j.aquabot.2005.02.006
- Ryther, J.H., J.C. Goldman, C.E. Gifford, J.E. Huguen, A.S. Wing, J.P. Clarner, L.D. Williams and B.E. Lapoi. 1975. Physical models of integrated waste recycling-marine polyculture system. Aquaculture, 5, 163-177 https://doi.org/10.1016/0044-8486(75)90096-4
- Schreiber, U., U. Schliwa and W. Bilger. 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res., 10, 51-62 https://doi.org/10.1007/BF00024185
- Solorzano, L. 1969. Determination of ammonia in natural waters by the phenol-hydrochlorite method. Limnol. Oceanogr., 14, 799-801
- Troell, M., C. Halling, A. Nilsson, A.H. Buschmann, N. Kautsky and L. Kautsky. 1997. Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture, 156, 45-61 https://doi.org/10.1016/S0044-8486(97)00080-X
- Troell, M., N. Kautsky and C. Folke. 1999. Applicability of integrated coastal aquaculture systems. Ocean and Coastal Manag., 42, 63-69 https://doi.org/10.1016/S0964-5691(98)00082-9
- Vergara, J.J., F.X. Niell and M. Torres. 1993. Culture of Gelidium sesquipedale (Clem.) Born. et Thur. in a chemostat system. Biomass production and metabolic responses affected by N flow. J. Appl. Phycol., 5, 405-415 https://doi.org/10.1007/BF02182733
Cited by
- Development of a seaweed species-selection index for successful culture in a seaweed-based integrated aquaculture system vol.12, pp.1, 2013, https://doi.org/10.1007/s11802-013-1928-z
- Nitrogen biofiltration capacities and photosynthetic activity of Pyropia yezoensis Ueda (Bangiales, Rhodophyta): groundwork to validate its potential in integrated multi-trophic aquaculture (IMTA) vol.26, pp.2, 2014, https://doi.org/10.1007/s10811-013-0214-1
- 다시마(Saccharina japonica)의 생장에 따른 영양염 및 CO2 흡수율과 광합성 특성 변화 vol.16, pp.4, 2009, https://doi.org/10.7850/jkso.2011.16.4.196