DOI QR코드

DOI QR Code

Characterization of Fatty Acids Extracted from Brachionus rotundiformis Using Lipase-catalyzed Hydrolysis

  • Lee, Jung-Kwon (Faculty of Marine Bioscience and Technology, Kangnung-Wonju National University) ;
  • Kim, Se-Kwon (Department of Chemistry, Pukyong National University) ;
  • Byun, Hee-Guk (Faculty of Marine Bioscience and Technology, Kangnung-Wonju National University)
  • Published : 2009.03.31

Abstract

Lipids were extracted from marine rotifer, Brachionus rotundiformis in order to examine the functionality of lipid enzymatic modification. The fatty acids, palmitic, linoleic, oleic and stearic acids were the dominant forms accounting for approximately 35.8%, 21.5%, 15.9% and 7.7% of the total lipid content, respectively. Lipid fractions were categorized as neutral lipids (38.5%), glycolipids (45.9%) and phospholipids (17.6%), and after extraction from the rotifer were isolated by thin-layer chromatography (TLC) as free fatty acids (FFA), monoacylglycerol (MAG), diacylglycerol (DAG) and triacylglycerol (TAG). The production of polyunsaturated fatty acid (PUFA) concentrate from rotifer lipids was studied using lipase-catalyzed hydrolysis. In addition, rotifer lipids were modified by hydrolysis using lipases such as porcine pancreas, Candida rugosa and Rhizomucor miehei. The lipase from Rhizomucor miehei was effective in extracting linoleic acid (C 18:2), while the lipase from Candida rugosa was effective in palmitic acid (C16:0) extraction.

Keywords

References

  1. Beare-Rogers, J., A. Dieffenbacher and J.V. Holm. 2001. Lexicon oflipid nutrition. Pure Appl. Chem., 73, 685-744 https://doi.org/10.1351/pac200173040685
  2. Bligh, EG. and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911-917 https://doi.org/10.1139/y59-099
  3. Carvalho, P.D.O., P.R.B. Campos, M. D'Addio N offs, D.H.M. Bastos and J.G. De Oliveira. 2002. Enzymic enhancement of n-3 polyunsaturated fatty acids content in Brazilian sardine oil. Acta. Pharma. Boner., 21 , 85-88
  4. Conpeman, L. and C.C. Parrish. 2004. Lipids classes, fatty acid, and stero1s in seafood from Gi1bert Bay, southem Labrador. J. Agric. Food Chem., 52, 4872-4881 https://doi.org/10.1021/jf034820h
  5. Cunnane, S. and M. Anderson. 1997. Pure linoleate deficiency in the rat: influence on growth, accumulation of n-6 polyunsaturates, and ($1_^14C$) linoleate oxidation J. Lipid, 4, 805-812
  6. Enrique, G.D., D.C. John, M.C.R. Shawn and J.B. Tammy 2008. Effects of dietary lipids on the fatty acid composition and lipid metabo1ism of thε green sea urchin (Strongy1ocentrotus droebachiensis). Aquacul-ture, 276, 120-129 https://doi.org/10.1016/j.aquaculture.2008.01.010
  7. Fuerby, A.M., L. Tian, P. Adlercreutz and B. Mattiasson. 1997. Preparation of diglycerides by lipase-catalyzed alcoho1ysis of triglycerides. Enzyme Microb. Technol., 20, 198-206 https://doi.org/10.1016/S0141-0229(96)00133-0
  8. Gaelle, P., P. Laurent, S. Samin and E. Francoisε. 2007. Use of 1ipases for the production of a DHA-rich lipid fraction from the microalgae (Isochrysis galbana). J. Biotechnol., 131 , 74-97
  9. Georgi, P. and G. Guileromo. 2007. Which are fatty acids ofthe green alga Chlorella? Biochem. Syst. Ecol., 35, 281-285 https://doi.org/10.1016/j.bse.2006.10.017
  10. Helrich, K. 1999. Official methods of Analysis 16th ed., Association of Official Analytical Chemists, Inc. Washington, DC, USA, 69-88
  11. Helrich, K. 1999. Official methods of Analysis 16th ed., Association of Official Analytical Chemists, Inc. Washington, DC, USA, 69-88
  12. Helland, S., B.F. Terjesen and L. Berg. 2003. Free amino acid and protein content in the p1anktonic copepod Temora 10ngicomis compared to Artεmia Franciscan. Aquaculture, 215, 213-218 https://doi.org/10.1016/S0044-8486(02)00043-1
  13. Lubzens E., A.Tandler and G. Mintoff. 1989. Rotifers as food in aquaculture. Hydrobiologia., 186, 387-400 https://doi.org/10.1007/BF00048937
  14. Marijana, T., V. Anne, G. Tor, S. Hilde, E.T. Bente, A.K. Marte and R. Bente. 2008. Preparation changes in fatty acids metabolism during differentiation of Atlantic salmon preadipocytes; Effects of n-3 and n-9 fatty acids. BBA-Mol. Cell Biol. L., 1781, 326-335 https://doi.org/10.1016/j.bbalip.2008.04.014
  15. Noureddini, H. and S.E. Harmeier. 1998. Enzymatic glycero1ysis of soybean oil. J. Am. Oil Chem. Soc., 75. 1359-1365 https://doi.org/10.1007/s11746-998-0183-8
  16. Park, H.G., K.W. Lee, S.M. Lee, S.K. Kim and H.S. Kim. 1999. Change of fatty acid composition of rotifer according to enrichment diets and methods in the high density culture. J. Korean Fish. Soc., 32, 748-752
  17. Park, R.K. and K.T. Lee. 2004. Synthesis and characterization of mono- and diacylglycerol enriched functional oil by enzymatic glycerolysis of com oil. Korea J. Food Sci., 36, 211-216
  18. Passi, S., S. Cataudella, P.D. Marco, F.D. Simone and L. Rasterlli. 2002. Fatty acid composition and antioxidant levels in muscle tissue of different mediterranean marine species of fish and shellfish. J. Agric. Food Chem., 50, 7314-7322 https://doi.org/10.1021/jf020451y
  19. Per-Avrid, W., H.R. Katja, L.c. Chantal, Z.I. Jose, R. Jose and K. Elin. 2007. Phospholipids vs. neutral lipids: Effects on digestive enzymes in Atlantic cod (Gadla morhua) larvae. Aquaculture, 272, 502-513 https://doi.org/10.1016/j.aquaculture.2007.06.034
  20. Periasamy, A., D.U. Park, E. J.Jeh, Y.S. Jeong and K.H. Byung. 2007. Incestigation of the physiological pro-perties and synthesis of PUF As from thraustochytrids and its electrophoretic karyotypes. Biotechnol. Bioprocess Eng., 12, 720-729
  21. Rosu, R., M. Yasui, Y. Iwasaki and T. Yamane. 1999. Enzymatic synythesis of symmertrical 1,3-diacylglycerols by direct esterifiaction of glycerol in solvent-free system. J.Am. Oil Chem. Soc., 76, 839-843 https://doi.org/10.1007/s11746-999-0074-7
  22. Rouser, G., D. Kritchevsky, G. Simon and G.J. Nelson. 1967. Quantitative analysis of brain and spinach leaf lipid employing silicic acid column chromatography and acetone for elution of glycolipids. Lipids, 2, 37-42 https://doi.org/10.1007/BF02531998
  23. Ruthig, D.J. and K.A. Meckling-Gill. 1999. Both (n-3) and (n-6) fatty acids stimulate wound healing in the rat intestinal epithelial cell line, IEC-6. J. Nutr., 10, 1791-1798
  24. Ronnestad, I., S.K. Tonheim, H.J. Fyhn, C.R. Rojas-Garcia, Y. Kamisaka, W. Koven, R.N. Finn, B.F Terjesen,Y. Barr and L.E.C Conceicao. 2003. The supply of amino acids during stages of marine fish larvae: a review of recent findings. Aquaculture, 227, 147-164 https://doi.org/10.1016/S0044-8486(03)00500-3
  25. Shimada, Y., A. Sugihara and Y. Tominaga. 2001. Enzymatic purification of polyunsaturated fatty Acids. J. Biosci. Bioprocess Eng., 6, 529-538 https://doi.org/10.1016/S1389-1723(01)80169-9
  26. Sun, T., G.M. Pigott and R.P. Herwing. 2002. Lipaseassisted concentration of n-3 polyunsaturated fatty acids from viscera of farrned Atlantic salmon (Salmo salar L.). J. Food Sci., 67, 130-136 https://doi.org/10.1111/j.1365-2621.2002.tb11372.x
  27. Tamotsu, H. and Y. Tsuneo. 1990. Selective hydrolysis of fish oil by lipase to concentrate n-3 polyunsaturated fatty acids. Agric. Biol. Chem., 54, 1459-1467 https://doi.org/10.1271/bbb1961.54.1459
  28. Tomoko, O. and M. Michael .2007. Production of n-3 polyunsaturated fatty acid concentrate from sardine oil by lipase-catalyzed hydrolysis. Food chem., 103, 1411-1419 https://doi.org/10.1016/j.foodchem.2006.10.057
  29. Ustun, G., S. Guner, G. Arer, S. Turkay and A.T. Erciyes. 1997. Enzymatic hydrolysis of anchovy oil: Production of glycεrides enriched in polyunsaturated fatty acids. Appl. Biochem. Biotech., 68, 171-186 https://doi.org/10.1007/BF02785989
  30. Yamamoto, K., H. Asakawa, K. Tokunaga, S. Meguro, H. Watanabe, I.Tokimitsu and N. Yagi. 2005. Effiect of diacylglycerol administration on serum triacylglycerol in a patient homozygous for complete lipoprotεm lipase deletion. Metab. Clin. Exp., 54, 67-71 https://doi.org/10.1016/j.metabol.2004.07.013