The Effect on the Thickness Variation According to Rolling Condition and Temperature Drop At Top-end in Plate Rolling

후판 압연 시 공정변수 및 선단부의 온도저하가 두께편차에 미치는 영향

  • Yim, H.S. (Dept. of Mechanical Engineering/ Engineering Research Center for Net Shape and Die Manufacturing, Pusan national university) ;
  • Joo, B.D. (Dept. of Mechanical Engineering/ Engineering Research Center for Net Shape and Die Manufacturing, Pusan national university) ;
  • Lee, H.K. (Dept. of Mechanical Engineering/ Engineering Research Center for Net Shape and Die Manufacturing, Pusan national university) ;
  • Seo, J.H. (Technical Research Laboratories, POSCO) ;
  • Moon, Y.H. (Dept. of Mechanical Engineering/ Engineering Research Center for Net Shape and Die Manufacturing, Pusan national university)
  • 임홍섭 (부산대학교 기계공학부/정밀정형 및 금형가공연구센터) ;
  • 주병돈 (부산대학교 기계공학부/정밀정형 및 금형가공연구센터) ;
  • 이혜경 (부산대학교 기계공학부/정밀정형 및 금형가공연구센터) ;
  • 서재형 (POSCO 기술연구소) ;
  • 문영훈 (부산대학교 기계공학부/정밀정형 및 금형가공연구센터)
  • Published : 2009.01.30

Abstract

The rolling process is an efficient and economical approach for the manufacturing of plate metals. In the rolling process, the temperature variation is very critical for plate thickness accuracy. The main cause of thickness variation in hot plate mills is the non-uniform temperature distribution along the length of the slab. Also the exit plate thickness is mainly affected by the rolling conditions such as mill modulus, plate thickness and plate width. Hence the thickness variation in top-end is also dependent on these factors. Therefore this study has concentrated on determining the correct amounts of thickness variation due to top-end temperature drop and process parameters.

Keywords

References

  1. S. Serajzadeh1, A. Karimi Taheri1, and F. Mucciardi : Modeling and Simulation In Materials Science and Engineering, 10 (2002) 185-203 https://doi.org/10.1088/0965-0393/10/2/306
  2. S. Y. Yuan, L. W. Zhang, S. L. Liao, G. D. Jiang, Y. S. Yu, and M. Qi : Journal of Materials Processing Technology, 209 (2009) 2760-2766 https://doi.org/10.1016/j.jmatprotec.2008.06.024
  3. Vladimir Panjkovic : Applied Thermal Engineering, 27 (2007) 2404-2414 https://doi.org/10.1016/j.applthermaleng.2007.03.009
  4. J. B. Kim, J. H. Lee, and S. M. Hwang : International Journal of Heat and Mass transfer, 52 (2009) 1864-1874 https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.013
  5. Y. H. Moon, and J. J. Yi : Journal of Materials Processing Technology, 70 (1997) 194-197 https://doi.org/10.1016/S0924-0136(97)02917-8
  6. Y. M. Hwang, and H. H. Hsu : Journal of Materials Processing Technology, 88 (1999) 97-104 https://doi.org/10.1016/S0924-0136(98)00390-2
  7. S. M. Hwang, C. G. Sun, S. R. Ryoo, and W. J. Kwak : Comput. Methods Appl. Mech. Engrg, 191 (2002) 4015-4033 https://doi.org/10.1016/S0045-7825(02)00298-0
  8. M. Trull, D. McDonald, A. Richardson, and D. C. J. Farrugia : Journal of Materials Processing Technology, 177 (2006) 513-516 https://doi.org/10.1016/j.jmatprotec.2006.04.097
  9. A. R. Shahani, S. Setayeshi, S. A. Nodamaie, M. A. Asadi, and S. Rezaie : Journal of Materials Processing Technology, 209 (2009) 1920-1935 https://doi.org/10.1016/j.jmatprotec.2008.04.055
  10. William L. Roberts : Flat processing of steel, Marcel Dekker (1988)
  11. Vladimir B. Ginzburg : High-Quality Steel Rolling Theory and Practice, Marcel Dekker (1993)