
Journal of Digital Contents Society Vol. 10 No. 1 Mar. 2009(pp. 129-145)

XML 트리 레벨을 고려한 관계형 데이터베이스 기반의 XML

접근 제어 모델

김진형*, 정동원**, 백두권***

 요 약

웹 환경에서 안전한 정보의 분배와 공유가 중요해짐에 따라 유동적이고 효율적인 접근 제어 시스템

에 대한 요구 또한 나타나게 되었다. 또한 eXtensible Markup Language (XML)이 인터넷 시대에 정보

를 저장 및 교환하기 위한 de-factor 표준으로 인식됨에 따라, 최근 보안을 고려한 XML 모델의 확장에

대한 연구가 활발히 진행되고 있다. 그러나 이러한 최근의 연구들은 여전히 XML 문서에 사용되는 데이

터들이 관계형 데이터베이스에 저장 및 관리 되고 있다는 사실을 간과하고 있다. 따라서 이러한 연구들

은 이미 많이 제안되고 검증된 관계형 데이터베이스에 대한 보안 모델을 활용 할 수 없다. 이 논문에서

는 기존의 연구들과는 다른 접근 방법을 기술한다. 이 논문은 객체 관점에서 관계형 데이터베이스에 대

한 보안 모델을 지원하기 위한 XML 보안 모델에 대한 연구에 초점을 둔다.

이 논문에서 제안하는 접근 방법에서는 (1) 사용자는 주어진 XML 뷰 또는 스키마에 XML 질의를 한

다. (2) XML 데이터에 대한 접근 제어 규칙은 관계형 데이터베이스에 저장된다. (3) XML 문서의 데이

터는 관계형 데이터베이스에 저장된다. (4) 접근 제어 및 질의 싱행은 관계형 데이터베이스 내에서 수행

된다. (5) XML 접근 제어는 XML　트리 레벨을 고려하여 수행된다.

RDB-based XML Access Control Model with XML Tree Levels

Jinhyung Kim*, Dongwon Jeong**, Doo-Kwon Baik**

 Abstract

As the secure distribution and sharing of information over the World Wide Web becomes

increasingly important, the needs for flexible and efficient support of access control systems naturally

arise. Since the eXtensible Markup Language (XML) is emerging as the de-facto standard format of

the Internet era for storing and exchanging information, there have been recently, many proposals to

extend the XML model to incorporate security aspects. To the lesser or greater extent, however, such

proposals neglect the fact that the data for XML documents will most likely reside in relational

databases, and consequently do not utilize various security models proposed for and implemented in

relational databases.

In this paper, we take a rather different approach. We explore how to support security models

for XML documents by leveraging on techniques developed for relational databases considering

object perspective. More specifically, in our approach, (1) Users make XML queries against the given

XML view/schema, (2) Access controls for XML data are specified in the relational database, (3)

Data are stored in relational databases, (4) Security check and query evaluation are also done in

relational databases, and (5) Controlling access control is executed considering XML tree levels

 Keywords : Relational database, XML Access Control, Object Perspective, XML tree level

※ 제일저자(First Author) : 김진형

접수일:2008년 12월 30일, 완료일:2009년 03월 11일

* 고려대학교 컴퓨터학과

jinhyung98.kim@gmail.com

** 군산대학교 정보통계학과 교수

*** 고려대학교 컴퓨터전파통신공학부 교수

▣ 이 논문은 2007년도 정부(교육인적자원부)의 재원

으로 한국학술진흥재단의 지원을 받아 수행된 연구임

(KRF-2007-331-D00448)

▣ 이 논문은 제 2차 BK 21 사업의 지원을 받았음

130 디지털콘텐츠학회 논문지 제10권 제1호 (2009. 3)

1. Introduction

As XML [1] is becoming a de facto standar

d for distribution and sharing of information, t

he issues for an efficient secure access of XM

L data has become very important. Various X

ML access control models and enforcement me

thods have been proposed recently. However, t

hese approaches either assume the support of

security features from XML database or use p

roprietary tools outside of databases. Since, th

ere are currently few commercial XML databa

ses with such capabilities, the proposed approa

ches are not yet practical[2][3][4]. In addition,

[5] and[6] executed the researches about XAC

ML, access control language which can be ma

naged in XML documents. However, these res

earches do not consider the fact that the great

amount data and access control information fo

r XML documents is still stored into a relatio

nal database. Therefore, limitations of native X

ML security models are summarized as follows.

l Poor Practicality: The great amount of data

is still stored into relational databases and

there are few commercial XML databases. I

n addition, commercial XML database mana

gement systems are not used widely due to

problem regarding stability and data transla

tion costs.

l Lack of Stability: Native XML security poli

cy is poor in stability because there are no

t enough commercial XML database manag

ement systems for practical application. Ho

wever, RDB-based security models are pro

ved to be stable by many researches and p

ractical uses.

l Low Performance: In case of native XML s

ecurity models, all of XML documents mus

t be loaded into the system whenever user

query is given. Such systems give us perfo

rmance problem on processing of XML dat

a access control.

l Simple User-based Security Policy: Native

XML security models only provide simple u

ser-based security policy. Therefore, native

XML security models cannot support a dat

a priority-based or a XML tree level-based

XML access control. Native XML security

models only supports 2 types access contro

l: the local type for the indicated node or t

he recursive type for the indicated node an

d all of descendant nodes. That is, native

XML security models cannot support acces

s control for indicated node and a part of d

escendant nodes.

To solve limitations of native XML security

models mentioned above, many researches abo

ut XML security model using relational databa

se have been executed. [7] presents a XENA

(XML sEcurity eNforcement Architecture) whi

ch stores XML documents as relational tables

with pre-processing method. [8] suggests XM

L access control method with XACT (XML A

ccess Control Tree). XACT is a tree which st

ores access control information for each node.

However, because XACT must be created for

each node in XML documents, if the size of X

ML documents is increased, the creating costs

of XACT can be exorbitant. [9, 10] suggests

QFilter which provides XML access control by

shared NFA and comparison evaluation betwee

n pre-processing and post-processing. [11] sug

gests SQ-Filter by using the Pre and the Post

values. However, the Pre and Post values mus

t be calculated for each node in XML docume

nts. Therefore, if the size of XML documents

becomes bigger, the cost for creating Pre and

Post values is enormous. Therefore, problems

of conventional RDB-based XML security mod

els are summarized as follows.

l Conceptual Model Level: Currently, research

es about RDB-based XML security models

just describe conceptual ideas or suggested

simple conceptual model That is, detail syst

XML 트리 레벨을 고려한 관계형 데이터베이스 기반의 XML 접근 제어 모델 131

em architecture or practical security model

is not enough.

l Simple User-based Security Policy: RDB-b

ased XML security models only provide si

mple user-based security policy. Therefore,

RDB-based XML security models cannot s

upport a data priority-based or a XML dat

a level-based XML access control. As nati

ve XML security models, RDB-based XML

security models also only support local and

recursive model access control.

l Low Translation Efficiency: RDB-based sec

urity models store XML data into the relati

onal database. For exact storing of XML d

ata, we need effective XML-to-RDB and R

DB-to-XML translation techniques without

loss of hierarchical structure information ab

out XML documents. However, conventiona

l RDB-based security models need too muc

h costs for storing hierarchical structure inf

ormation of XML documents into the relati

onal database.

l Inefficiency of Processing about User Querie

s: RDB-based XML security models have fo

rmat heterogeneity among XML data, ACRs,

and user quires. XML data is stored into th

e relational database. ACRs is defined as te

xt form separately and user queries (XQuer

y) is translated into SQL form. These meth

ods make us difficult to compare and analyz

e XML data, ACRs, and user quires. That i

s, cost of pre-processing is high in conventi

onal RDB-based XML security models.

Therefore, our goal in this paper is to study

how to support XML security models more eff

ectively than conventional RDB-based XML se

curity models by utilizing security support of r

elational security models. In addition, we sugg

est security model considering XML tree level

s for supporting more detailed and exact acces

s control than existing XML security models.

In this paper, we assume that

ü XML documents are converted into and sto

red in relational databases.

ü Users give queries as XQuery form and th

e queries are analyzed and stored into the

relational databases.

ü Access control rules are defined by securit

y administrators and stored into relational

databases.

Security check and query evaluation are done

by relational databases considering XML tree l

evels and only valid answers are returned to

users in the XML format.

This paper is organized as follows, We analy

ze existing native XML security models and R

DB-based security models as a preliminary wor

ks and explore several research issues in sectio

n 2. In section 3, we describe a framework of

Suggested Models and physical storage schema

of XML documents, access control rules, and u

ser queries. In section 4, we illustrate an experi

ment with experimental dataset and a comparat

ive evaluation between conventional RDB-based

XML security models. Finally, we conclude this

paper with future works in section 5.

(Figure. 1) Overview Architecture of

Suggested Model

2. Preliminaries

2.1 Native XML Security Models

Current access control research can be categ

orized into two groups: access control modelin

g and access control enforcement mechanisms.

On the model side, several XML access con

trol models have been proposed. Starting with

[12] for HTML documents; [2][3] describes X

132 디지털콘텐츠학회 논문지 제10권 제1호 (2009. 3)

ML access control with an authorization sheet

to each document or DTD[4]. proposed and X

ML access control model to deal with authoriz

ation priorities and conict resolution. [13] intro

duced provisional authorization and XACL.[14]

formalizes the way of specifying objects in X

ML access control using XPath. Most of the p

roposals adopt either role-based access control

or credential-based access control. The major

di_erence between them is the way they identi

fy users. Credential-based access control is m

ore exible and powerful in this aspect. Howev

er, in the research of access control enforceme

nt mechanisms, people tend to choose a relativ

ely simple access control model to avoid distra

ction.

XML access control enforcement mechanism

s in native XML environment have been inten

sively studied in recent years. They are categ

orized into four classes: (1) engine level mech

anisms implement security check inside XML

database engine; each XML node is tagged wi

th a label [15, 16] or an authorization list [17],

and _ltered during query processing. (2) view-

based approaches build security views that onl

y contain access-granted data [18]. (3) pre-pro

cessing approaches check user queries and enf

orce access control rules before queries are ev

aluated, such as the static analysis approach

[19], QFilter approach [10], access condition ta

ble approach [20], policy matching tree [21], se

cure query rewrite (SQR) approach [22], etc.

However, native XML security models have

limitations. The amount of data is still stored

into relational databases and commercial XML

database is poor to use regarding stability and

translation costs. Therefore, native XML securi

ty models represent low practicality and stabili

ty. In addition, because whenever user queries

are given, all of XML document must be loade

d. This point gives low processing performanc

e about user queries. Besides, native XML sec

urity models just support simple user-based se

curity policy without supporting a data priority

-based or a XML data level-based XML acce

ss control.

2.2 RDB-based XML Security Models

Since late 1990s, many researches about X

ML security model using relational databases

have been performed. [7] proposes an idea of

using RDBMS to handle access controls for X

ML documents in a limited setting. [7] sugges

ts XENA system with schema-level XML sec

urity model, structure-based XML-RDB transl

ation, and pre-pruning. In [9, 10], Bou suggest

s a practical and scalable solution, called Quer

y Filter (QFilter). As an XML access control

pre-processor external to the database engine,

the QFilter checks XPath queries against acce

ss control policies. Instead of simply filtering o

ut queries that do not satisfy access control p

olicies and deferring the rest of queries to XM

L query engines for further checking and proc

essing. QFilter takes extra steps to rewrite qu

eries in combination of related access control

policies by using shared NFA before passing t

he revised queries to underlying XML query e

ngine for processing. However, QFilter include

s unnecessary information in user query aspec

t and requests overheads for rewriting user qu

ery. [11] suggests SQ-Filter by using the Pre

and the Post values. However, the Pre and Po

st values must be calculated for each node in

XML documents. Therefore, if the size of XM

L documents becomes bigger, the cost for crea

ting Pre and Post values is enormous.

3. Framework of Suggested

Model

In this section, we describe architecture and

detail components of RDB-based XML securit

y model considering data levels (TL-BAC). In

addition, we propose XML-to-RDB translation

algorithm and use VQT algorithm [23, 24, 25]

as RDB-to-XML translation algorithm. Beside

XML 트리 레벨을 고려한 관계형 데이터베이스 기반의 XML 접근 제어 모델 133

Name of

Component

Function

Data Graph

Generator

Creates data graphs based on given

XML documents

Data

Translator

Analyzes data graphs and stores data

into RDB based on data graphs

VQT

Translator

Converts relational-form query results

into XML form

ACR

Manager

Defines and updates XML access

control rules

Translates Recursive ACR into

Local ACR

Query

Translator

Converts XQuery into relational form

and stores into relational databases

1stQuery

Rewriter

Rewrites recursive mode queries as

local mode queries

Query

Pre-Process

or

Combines user quires and access

control rules and analyzes for access

control

2ndQuery

Rewriter

Rewrites queries based on analysis

results of query pre-processor

Query

Processor

Sends user queries to relational

database and executes search

s, we describe relational database schema for

storing XML data, ACRs, user queries and us

er query rewriting process with example.

3.1 Architecture

(Figure 2) shows a conceptual flow of acces

s control processing.

(Figure 2) Conceptual Processing Flow of the

Suggested Model

In the TL-BAC system, we store XML dat

a from XML documents, XML access control

rules by the security administrator, and user q

ueries into relational database with a similar f

orm. XML documents are converted into the d

ata graph and stored into relational database

without loss of hierarchical structure informati

on. XML access control rules are defined by t

he security administrator in relational database

s directly. User queries are given by XQuery

form and rewritten and stored into relational d

atabases. Stored user queries are combined int

o XML access control rules and rewritten agai

n. User queries rewritten 2 times are sent to r

elational databases and search results are retur

ned to users. TL-BAC system consists of 9 c

omponents and functions of each component ar

e as <Table 1>

<Table 1> Components Constitution

3.2 XML-to-RDB and RDB-to- XML

Conversion

For storing XML data into relational databa

ses, we must convert XML documents into rel

ational database without loss of hierarchical st

ructure information of XML documents. For ef

fective extraction of information about the hier

archical structure from XML documents, the f

ollowing processes are needed. First, we analy

ze the schema for the XML document and cre

ate a data graph with a hierarchical relationshi

p. Second, we perform a depth-first search fro

m root node to leaf nodes in XML documents

based on the created data graph, and create p

aths for each node. If we arrive at a leaf nod

e, we create a path for the leaf node and the i

ntermediate nodes. However, we create paths f

or intermediate nodes just once, thus we can

avoid duplicate path creation. <Table 2> repre

sents descriptions about the symbols and notat

ions used in the path creation algorithm.

In the data graph, each node consists of the

following elements. Definition 1 represents the

node constitution in the data graph.

134 디지털콘텐츠학회 논문지 제10권 제1호 (2009. 3)

Notations Description

Node.number Node number assigned by DFS

search in the Data Graph

Node.visiting_flag Visited nodes have flag set to 1,

nodes which have not been visited

have flag set to 0

Node.child_flag Nodes which do not have child

nodes have flag set to 0, Nodes

which do have them have flag set

to 1

Node.sibling_flag Nodes which do not have sibling

nodes have flag set to 0, Nodes

which do have them have flag set

to 1

visiting_node[] Array for representing visited node

lists

DFS_visit() Function for search in the Data

Graph by DFS search method

Nextnode() Function for description of next

ordered node in DFS search

path_temp[] Array for storing created path

temporally before duplication

checking

path_storage[] Array for storing created path

after duplication checking

Createpath() Function for creating XPath from

root node to current node

Pathcheck() Function for checking duplicated

creation of node paths

Backtrackingpath() Function for execution of path

backtracking in the Data Graph

<Table 2> Description about Symbols and

Notations in Algorithm

Definition 1. (Node Constitution in the

Data Graph) Each node in the data graph is

denoted by a 5-tuple; N(name) = (Na, Nu, Vf,

Cf, Sf),where

ü Na represents a specific name of each node

ü Nu represents a specific node number whic

h is assigned by DFS searching when the

Data Graph is created

ü Vf represents whether a node has been visi

ted, and a path has been created for the no

de or not. If a node has been visited and a

path has been created for the node, the visi

ting_flag of this node is 1, but if a node h

as not been visited, the flag is 0.

ü Cf represents whether a node has child nod

es or not. A node which has no child node

s has a flag set to 0 but a node which ha

ve child nodes has a flag set to 1.

ü Sf represents whether a node has sibling n

odes or not. A node which has no sibling

nodes has a flag set to 0 but a node which

have sibling nodes has a flag set to 1.

Definition 2. (Case Definition in the P at

h Creation) When we create path for each no

de from a Data graph, there are two represent

ative cases and four detailed cases; case1, cas

e2-1, case2-2, and case2-3.

ü Case 1: Node.visiting_flag = 0 AND Node.c

hild_flag = 0

ü Case 2: Node.visiting_flag = 0 AND Node.c

hild_flag = 1

ü Case 2-1: Node.sibling_flag = 0 AND Siblin

g_node.visiting_flag = 0

ü Case 2-2: Parent_node.sibling_flag = 0 AND

Parent_node.siblng_node.visiting_ flag = 0

ü Case 2-3: Ascendant_node.sibling_ flag=0 A

ND Ascendant_node.sibling_node. visiting _flag=0

Definition 2 defines various cases of path cr

eation. Case 1 represents the case where the c

urrent node has not been visited and has child

nodes. In case 1, we store the name of the cu

rrent node in the visiting_node array and sear

ch the child node as the next order. Case 2 de

scribes the case where a node has not been vi

sited and does not have child nodes; the curre

nt node is leaf node. In this case, we create a

path for the node and the intermediate nodes

between the root node and the current node.

However, we must check for duplicate path cr

eation in this case, because the intermediate n

odes of all sibling nodes are the same. To che

ck for duplication of node paths, we temporaril

y store the created path in a path_temp array.

The path stored in the path_temp array is co

mpared with the path included in a path_stora

ge array. If the created path is not contained i

n the path_storage array, the path is finally st

ored in the path_storage array. Case 2-1, case

2-2, and case 2-3 are backtracking cases, afte

r we search leaf nodes. Case 2-1 illustrates th

XML 트리 레벨을 고려한 관계형 데이터베이스 기반의 XML 접근 제어 모델 135

Procedure:

 Initialize i=1, j=0, k=0, m=0

 Class Node

 Initializestringname=null,

 Initializeintnumber=0,

 Initializeintvisiting_flag=0,

 Initializechild_flag=0,

 Initializesibling_flag=0

 For(Root_nodetoFinal_leaf_node)

 Initializevisiting_node[]

 DFS_visit(Node)

 if(Node.visiting_flag==0&&Node.child _flag ==0)

 visiting_node[k] = Node.name

 Incrementk

 Node.visiting_flag = 1

 Nextnode(child_node)

 Endif

 e l s e i f (N o d e . v i s i t i n g _ f l a g = = 0 & &

Node.child_flag==1)

 visiting_node[k] = Node.name

 Dowhile(visiting_node[k]!=null)

 Initializek=0

 Initializepath_temp[],path_storage[]

 path_temp[k] =

Createpath(Root_node,visiting_node[k])

 Forj=0toj(max)

 Form=0tom(max)

 Pathcheck(path_temp[j],path_storage[m])

 Incrementm

 if(path_temp[j]!=path_storage[m])

 path_storage[m(max)+1]=path_temp[j]

 Endif

 Incrementj

 Incrementk

if(Node.sibling_flag==0&&sibling_node.visiting_flag

==0)

 Backtrackingpath(sibling_node)

 Nextnode(sibling_node)

 else

 Dowhile(parent_node!=null) // in case

of visited leaf nodes and sibling nodes

 Backtrackingpath(parent_node)

if(parent_node.sibling_flag==0||parent_node.siblng_

node.visiting_flag==0)

 Nextnode(parent_node.sibling_node)

 elseLoop

 Endelseif

End Procedure

e case where a leaf node has sibling nodes w

hich have not been visited. In this case, we pe

rform backtracking to a parent node and searc

h sibling nodes in the next ordering. Case 2-2

represents the case where a leaf node does no

t have sibling nodes which have not been visi

ted. In this case, we perform backtracking to

a parent node which has sibling nodes which

have not been visited, and search sibling node

s of the parent node. If there are no sibling n

odes of the parent node which have not been v

isited, we perform backtracking to the ascendan

t node. If the ascendant node has unvisited sibl

ing nodes which have not been visited, we sear

ch these nodes, as in case 2-3. This process is

iterated until we have searched every node in t

he Data Graph, and path creation is completed

when there are no nodes in Case 1, Case 2-1,

Case 2-2, and Case 2-3. (Figure 3) shows the

flow of path creation in terms of search cases.

(Figure 3) Flow of Path Creation

<Table 3> Path Creation Algorithm
RDB-to-XML translation is not focused in t

his paper and we use the VQT algorithm alre

ady developed by us [2][24][25]. The VQT alg

orithm is superiority to conventional translatio

n algorithm because the VQT algorithm consid

ers not only syntactic aspect but explicit/impli

cit semantic aspect.

3.3 Relational Database Schema

In TL-BAC system, relational databases incl

ude XML data, XML access control rules, and

user queries. This information is stored as a s

136 디지털콘텐츠학회 논문지 제10권 제1호 (2009. 3)

Rule_I

D

Subj Role Type Path Att Value Lev

el

1 Bob R+ R Order/

Order_i

nfo/Add

r//

City Seoul .

2 Bob W+ R Order/C

ustome

r_info//

. . 2

3 Jane R- L Order/

Custom

er_info/

Credit_

card

Name Not

Jane

.

<Table 5> Storage Schema of Access Control

Rules Defined by the Security Administrator

imilar schema structure. In TL-BAC system,

XML access control rules and user queries ha

ve to be combined in a pre-processing step fo

r query rewriting. In addition, rewritten user q

ueries and XML data must be processed in a

query processing step. If each form of informa

tion is different, additional algorithm or additio

nal translation steps are needed for processing.

Therefore, XML data, XML access control rule

s, and user queries are stored into relational d

atabases as a similar schema structure for effe

ctive access control processing.

<Table 4> Storage Schema of XML

Data

Doc

_ID

Node

_ID

Name Parent

_ID

Path

1 3 Name 2 Order/Custome

r_info/Name

1 5 Addr 2 Order/Custome

r_info/Addr

1 6 City 5 Order/Customer

_info/Addr/City

1 7 Zip 5 Order/Custome

r_info/Addr/Zip

… … … … …

The storage schema of XML data is as <T

able 4> The table for XML data consists of 5

attributes. The Doc_ID represents XML docum

ent number and the Node_ID represents node

number in XML documents. In relational datab

ases, several XML documents can be stored a

nd each XML documents consists of many no

des. Therefore, we need identifiers for distingu

ishing XML documents and nodes. Name attri

bute represents name of each node and the Pa

rent_ID represents the node identifier of parent

node. The Parent_ID attribute can be used for

searching child nodes in data priority-based or

data level-based XML access control. The Pat

h attribute represents XPath values of each no

de. By the XPath attribute, we can describe hi

erarchical structure information of XML docum

ents in the relational databases easily and sear

ch parent node and root node simply.

The storage schema of XML access control

rules is as <Table 5> This storage schema is

a beginning schema defined by the security ad

ministrator and changed recursive form into lo

cal form automatically as <Table 6>

Definition 3. (Definition of Access Contr

ol Rules) Each access control rule in the Sug

gested Model is denoted by a 7-tuple; ACR=

(S, R, T, P, A, V, L), where

ü S represents a subject of access control rule.

ü R represents a roles of access control rule

s. R can have R(read) or W(write). In addi

tion, R represents a positive or negative rol

es by '+' or '-'.

ü T represents a types of access control rule

s. T can have R(recursive) and L(local). T

he local type apply access control rules to

only an indicated node. The recursive type

apply access control rules to the indicated

node and all of descendant nodes.

ü P represents a path information that access

control is applied. The path information is

represents as the XPath form.

ü A represent a attribute which has value.

ü V represents a value that an attribute has.

ü L represents a scope of access control rule

s. If L has 1, this means local type access

control. If L has 2, this means that the acc

XML 트리 레벨을 고려한 관계형 데이터베이스 기반의 XML 접근 제어 모델 137

Ru l e

_ID

Subj Role Type Path Att Value

1 Bob R+ L O r d

er/Orde

r_info/

Addr

City Seoul

2 Bob R+ L O r d

er/Orde

r_info/

Addr/C

ity

City Seoul

3 Bob R+ L Orde

r/Order

_info/A

ddr/Zip

City Seoul

4 Bob W+ R O r d

er/Cust

omer_i

nfo//

. .

5 Bob W+ R O r d

er/Cust

omer_i

nfo//Na

me

. .

6 Bob W+ R O r d

er/Cust

omer_i

nfo//Ph

one

. .

7 Bob W+ R O r d

er/Cust

omer_i

nfo/Ad

dr/

. .

8 Bob W+ R O r d

er/Cust

omer_in

fo//Cre

dit_card

. .

9 Jane R- L O r d

er/Cust

omer_in

fo/Cred

it_card

Name Jane

ess control rules are applied to the indicate

d node and child nodes. Through level, we

can perform more detail access control exce

pt a local and recursive type access control.

<Table 6> Translated Storage Schema of

Access Control Rules

The final storage schema of XML access co

ntrol rules is as <Table 6> This storage sche

ma is translated from <Table 5> automatically

by the ACR Manager component. The table fo

r access control rules consists of 8 attributes.

The Rule_ID attribute is an identifier of each a

ccess control rule and the subj attribute is a s

ubject of access control rule. The Role attribut

e is a positive/negative role of the subject and

can have ‘R(read)’ or ‘W(write)’ or ‘U(update)’v

alues. Besides, ‘+’ or ‘-‘ represent positive or n

egative roles. The Type attribute is an access

control scope and can have ‘R(recursive)’ or ‘L

(local)’ value. The recursive node includes indi

cated node and all child nodes of that node. H

owever, the local node only includes indicated

node. The Path attribute is a path information

of node that the access control is applied to. T

he Att attribute is attribute information and th

e Value attribute include values related to the

attribute. The Level attribute represents that th

e described rule is applied to the indicated nod

e and child node represented as the level valu

e. That is, level value 1 means that this acces

s control rule is applied to the only indicated n

ode, same as local mode. As the table 5, level

value 2 means that this access control rule is

applied to the indicated node and child nodes,

not descendant. By using concept of level, the

TL-BAC system can support detail and more

exact access control that the conventional recu

rsive mode or the local mode cannot support.

<Table 7> Storage Schema of User

Queries

Query_ID Subj Role Path

1 Bob R Order/Order_info//

2 Bob W Order/Customer_info//

The storage schema of XML data is as<Ta

ble 7> The table for XML data consists of 4

attributes. The Query_ID attribute represents a

n identifier of each user query. The Subj attri

bute represents a subject of user queries and t

he Role attribute represents a role which the s

ubject wants to. The Path attribute represents

path information of the target node. The given

user queries are rewritten 2 times and detail r

ewriting process will be described in the next

138 디지털콘텐츠학회 논문지 제10권 제1호 (2009. 3)

(Fig. 4) Experimental Dataset

Query_ID Subj Role Path

1 Bob R Order/Order_info

2 Bob R Order/Order_info/Title

3 Bob R Order/Order_info/Publication

4 Bob R Order/Order_info/ISSN

5 Bob R Order/Order_info/Price

6 Bob R Order/Order_info/Addr

7 Bob R Order/Order_info/Addr/Zip

8 Bob R Order/Order_info/Addr/City

9 Bob W Order/Customer_info

10 Bob W Order/Customer_info/Name

11 Bob W Order/Customer_info/Phone

12 Bob W Order/Customer_info/Addr

13 Bob W Order/Customer_info/Addr/City

14 Bob W Order/Customer_info/Addr/Zip

15 Bob W Order/Customer_info/Credit_card

<Table 8> 1st Query Rewriting Results

section.

3.4 Rewriting Process of User Queries

In the TL-BAC system, the given user quer

ies are rewritten 2 times by the 1st query Re

writer component and 2nd Query Rewriter co

mponent. In the first query rewriting process,

the Query Rewriter analyzes the given user q

ueries and converts all of recursive mode quer

ies into local model queries. The recursive mo

de queries includes ---//, ---/*, //---, */---,

and so on. Such queries can be divided into s

everal local mode queries. For effective combin

ation and processing between user queries and

access control rules, the local form queries are

more simple and efficient for processing.

Theorem 1. (Query Writing Rules in the

1st Query Rewriting)

ü ----// : Rewriting query with adding all of

descendant nodes

ü ---/* : Rewriting query with adding all of

child nodes

ü //--- : Rewriting query with adding all of

ascendant nodes

ü */--- : Rewriting queries with adding all of

parent nodes

<Table 8> illustrates the 1st query rewritin

g results about the given user query shown in

<Table7>. The 1st query rewriting is execute

d by rewriting rules mentioned above.

In the second query rewriting process, the

XML 트리 레벨을 고려한 관계형 데이터베이스 기반의 XML 접근 제어 모델 139

Query Pre-Processor combines access control

rules and user queries and rewrites queries by

following rewriting rules.

Theorem 2. (Queries Writing Rules in t

he 2nd Query Rewriting)

ü If user query included in the positive acces

s control rules, no rewriting

ü If user query included in the negative acce

ss control rules, delete query

ü If user query included in the positive acces

s control rules with attribute value, rewrite

query with adding with attribute value.

ü If a part of user query is included in the p

ositive access control rules or the negative

access control rules,

Q’ = Q ∩ (ACR+ ∩ (ACR-)-1)

= (Q ∩ ACR+) ∩ (Q ∩ (ACR-)-1)

= (Q ∩ ACR+) – (Q ∩ ACR-)

<Table 9> illustrates the 2nd query rewritin

g results about the rewritten user query show

in <Table8>. The 2nd query rewriting is perfo

rmed by rewriting rules mentioned above.

<Table 9> 2nd Query Rewriting Results

Query
_ID

Subj Rol
e

Path

1_1 Bob R Order/Order_info/Addr[City=’
Seoul]

1_2 Bob R Order/Order_info/Addr/Zip[Ci
ty=’Seoul]

1_3 Bob R Order/Order_info/Addr/City[C
ity=’Seoul]

2_1 Bob W Order/Customer_info

2_2 Bob W Order/Customer_info/Name

2_3 Bob W Order/Customer_info/Phone

2_4 Bob W Order/Customer_info/Addr

2_5 Bob W Order/Customer_info/Credit_c
ard

4. Experiment and Evaluation

4.1 Experimental Dataset

This experiment is focus on the accuracy a

bout access control of the Suggested Model. I

n this experiment, we use simple XML dataset

shown in the (Figure 4). The XML dataset de

scribes the book order information and include

s 29 elements. In addition, the XML dataset c

onsists of an order information, a customer inf

ormation, and a book information. The XML　

document is translated and stored into the rela

tional database. The translated dataset is as

<Table 10>.

<Table 10> Translated Dataset in the RDB

Cust
_id

Goods
_id

Order
_date

Quant
ity

Met
hod Cost

C01 B01 02/13 2 Post $3
C02 B03 01/10 3 D-to-D $5
C03 B02 03/11 1 Post $3
...

<Order_Info Table>

Na
me

Com
pany

Num
ber

Offi
ce

Cou
ntry City Zip credit

_card
...

<Cust_Info Table>

Title Publication ISBN Prime_cost tax
...

<Book_Info Table>

4.2 Definition of Access Control Rules

Access control rules for the experiment are

as follows.

ü ACR1 = (Tom, R+, R, Order/Order_info, *, *, *)

ü ACR2 = (Bob, R+, R, Order/Cust_info, Nam

e, Bob, *)

ü ACR3 = (Jane, W+, R, Order/Cust_info, Na

me, Jane, *)

ü ACR4 = (Jane, R+, L, Order/Order_info/ Or

der_date, Name, Jane, *)

ü ACR5 = (Bob, R-, L, Order/Cust_info/ Cred

it_card, Name, not Bob, *)

ü ACR6 = (Bob, R+, R, Book_info, *, *, 2)

ü ACR7 = (Jane, R+, R, Order/Cust_info/ Pho

ne, *, *, 2)

Described access control rules are represente

d as ACR=(Subject, Role, Type, Path, Attribue,

Value, Level) form shown in the definition 3.

140 디지털콘텐츠학회 논문지 제10권 제1호 (2009. 3)

(Figure 5) Accessible Dataset Part by the Access Control Rules

(Figure 5) describe the accessible dataset b

y the 7 access control rules. The access contr

ol rule 1 is the general recursive type access

control rule. The access control rule is applied

to the indicated node described in path tuple a

nd all of descendant nodes. The access control

rule 2 is also the recursive type access control

rule with attribute value. The access control r

ule 2 is limited by a value of the 'Name' attri

bute. That is, this rule is applied when a valu

e of the 'Name' attribute is 'Bob'. The access

control rule 3 is similar to the access control r

ule 2. The access control rule 3 describes the

positive rule about write role and is limited by

a value of the 'Name' attribute. The access c

ontrol rule 4 is the local type access control li

mited by an attribute value. The access contro

l rule 5 is the local type negative access contr

ol rule. Generally, if the positive access control

is not defined, that part is regarded as access

denial. In addition, the negative access control

rules are priority to the positive access control

rules. In case of the access control rule 2 and

5, access control rules for 'Credit_card' attribu

te are duplicated. However, the access control

rule 5 is priority to the access control rule bec

ause the access control rule 5 is the negative

access control rule. The access control rule 6 i

s newly defined access control rules in this pa

per. The access control rule 6 is the recursive

type access control rule with tree level specifi

cation. The tree level specification means that

the access control rule is applied from the indi

cated node to descendant nodes of specified su

b level. By using the concept of tree level spe

cification, we can perform more detail access c

ontrol about XML documents except for the lo

cal type and recursive type access control.

4.3 Experiment Results and Evaluation

For exmpeirment, we use 7 queries. If user

quereis are given as XQuery form, the queries

XML 트리 레벨을 고려한 관계형 데이터베이스 기반의 XML 접근 제어 모델 141

are stored into the relational database. In addit

ion, the recursive type user queries are change

d into the local type user queries and combine

d with access control rules by the query rewriti

ng rules shown in the theorem 1 and 2.

If user queries are given as XQuery form, t

he query lists are anlyzed and stored into the

relational database as <Table 11>.

<Table 11> User Query Lists

Query_ID Subj Role Path

1 Tom R Order/Order_Info//

2 Bob R
Order/Cust_Info/Phone[Name

='Bob]//

3 Tom R
Order/Order_Info/Delivery[N

ame='Jane]//

4 Bob R
Order/Cust_Info/Credit_card[

Name='Jane]

5 Jane W Order/Cust_Info[Name='Bob]//

6 Bob R
Order/Book_Info[Title='Les

Miserables]//

7 Bob R Order/Book_Info/Price//

8 Jane R Order/Cust_Info/

The recursive type user queries are translat

ed into the local type queries by the 1st query

rewriting rules described in theorem 1 for effe

ctive combination and comparison with the acc

ess control rules.

In 2nd query rewriting, user queries are re

written by the 2nd query rewriting rules show

n in theorem 2. In case of query 1, the query

1 is equal to the scope of the access control r

ule 1. Because the access control rule 1 is the

positive rules, we do not need to rewrite the u

ser query 1 in the 2nd query rewriting. The u

ser query 2 is included in the scope of the ac

cess control 2 and the user query 3 is include

d in the scope of the access control 2. As a r

esult, the user query 2 and 3 are not rewritten

in the 2nd query rewriting.

The user query 4 is included in the scope o

f the access control rule 5. Because the access

control rule 5 is the negative rule, the user qu

ery 4 is deleted. In case of the user query 5, t

here is no access control rules which have the

scope including the user query 5. Basically, if

the access control rule is not defined for some

node or part, the access control about that nod

e or part is regarded as access denial. Therefo

re, the user query 5 is also disposed in the 2n

d query rewriting. A part of the user query 6

is included in the access control 6. The user q

uery 6 includes 'Book_Info' node and all of de

scendant nodes, but the scope of the access co

ntrol rule 6 is from 'Book_Info' node to child

nodes. Because the access control 6 is defined

with level which value is 2, an intersection of

the user query 6 and the access control 6 is e

xecuted and then the user query 6 is rewritten

by the theorem 2 in the 2nd query rewriting.

A part of the user query 7 is also included in

a scope of the access control rule 6. The user

query 7 includes 'Price' node and descendant

nodes, but the access control rule 6 is only in

cludes 'Price' node. Therefore, the user query

7 is rewritten and 'Bob' can only access 'Pric

e' node as a result of the intersection of the u

ser query 7 and the access control rule 6.

As shown in the <Table 12>, all of user qu

eries are rewritten or deleted by the theorem

1 and theorem 2. From user query 1 to user q

uery6 can be processed by the Suggested Mod

el illustrated in this paper and conventional X

ML security models. However, access control

process about user query 6, 7, and 8 can only

be processed in the Suggested Model describe

d in this paper. Through the processing of use

r query 6, 7, and 8 by the access control rule

6 and 7, we can perform more detail access c

ontrol about XML documents than conventiona

l XML security models which only use the loc

al or recursive type access control rules.

142 디지털콘텐츠학회 논문지 제10권 제1호 (2009. 3)

Query_ID Subj Role Path
1_1 Tom R Order/Order_Info
1_2 Tom R Order/Order_Info/Order_id
1_3 Tom R Order/Order_Info/Order_id/Cust_id
1_4 Tom R Order/Order_Info/Order_id/Good_id
1_5 Tom R Order/Order_Info/Order_date
1_6 Tom R Order/Order_Info/Quantity
1_7 Tom R Order/Order_Info/Delivery
1_8 Tom R Order/Order_Info/Delivery/Method
1_9 Tom R Order/Order_Info/Delivery/Cost
2_1 Bob R Order/Cust_Info/Phone[Name='Bob]
2_2 Bob R Order/Cust_Info/Phone[Name='Bob]/Mobile
2_3 Bob R Order/Cust_Info/Phone[Name='Bob]/Office
2_4 Bob R Order/Cust_Info/Phone[Name='Bob]/Mobile/Company
2_5 Bob R Order/Cust_Info/Phone[Name='Bob]/Mobile/Number
3_1 Tom R Order/Order_Info/Delivery[Name='Jane]
3_2 Tom R Order/Order_Info/Delivery[Name='Jane]/Method
3_3 Tom R Order/Order_Info/Delivery[Name='Jane]/Cost
6_1 Bob R Order/Book_Info[Title='Les Miserables]
6_2 Bob R Order/Book_Info[Title='Les Miserables]/Title
6_3 Bob R Order/Book_Info[Title='Les Miserables]/ Publication
6_4 Bob R Order/Book_Info[Title='Les Miserables]/ISBN
6_5 Bob R Order/Book_Info[Title='Les Miserables]/Price
7_1 Bob R Order/Book_Info/Price
8_1 Jane R Order/Cust_Info
8_2 Jane R Order/Cust_Info/Name
8_3 Jane R Order/Cust_Info/Phone
8_4 Jane R Order/Cust_Info/Phone/Mobile
8_5 Jane R Order/Cust_Info/Phone/Office
8_6 Jane R Order/Cust_Info/Address
8_7 Jane R Order/Cust_Info/Address
8_8 Jane R Order/Cust_Info/Address
8_9 Jane R Order/Cust_Info/Address

8_10 Jane R Order/Cust_Info/Credit_card

<Table 12> Rewritten User Query Lists

Query
Access

Result
2nd Rewriting

Q1 FA None

Q2 FA None

Q3 FA None

Q4 D Deleted

Q5 D Deleted

Q6 PA Rewritten

Q7 PA Rewritten

Q8 PA Rewritten

<Table 13> Evaluation of User Queries FA: Fully Allow, D: Deny, PA: Partially Allow

As shown in <Table 13>, query 1, 2, and

3 are included in the scope of the positive acc

ess control rules. Therefore, access control res

ults of these queries are fully access allowanc

e and we do not need to rewrite the queries i

n the 2nd query rewriting. query 4 and 5 are

included in the negative access control rule or

not defined in access control rule lists. Theref

ore, access control results of query 4 and 5 ar

e access denial and we delete the queres in th

e 2nd query rewriting. User query 6, 7, and 8

are partially included in the scope of the positi

ve access control rules. Thus, access control r

esults of query 6, 7, and 8 are partially access

XML 트리 레벨을 고려한 관계형 데이터베이스 기반의 XML 접근 제어 모델 143

allowance and we rewrite queries by the comb

ination with access control rules.

<Table 14> Comparative Evaluation

Query

Native

XML

Model

Relational

DB-based

Model

TL-BAC

1 Support Support Support

2 Support Support Support

3 Support Support Support

4 Support Support Support

5 Support Support Support

6
Not

Support

Not

Support
Support

7
Not

Support

Not

Support
Support

8
Not

Support

Not

Support
Support

<Table 14> shows the comparative evaluati

on about processing of the given queries. The

native XML security model and Relational DB-

based security model can support access contro

l from query 1 to 5 as the access allowance or

denial. Query 1, 2, and 3 are related to the rec

ursive or the local type positive access control

rules. Therefore, access about query 1, 2, and

3 is allowed and conventional security models

and proposed Suggested Model can support acc

ess control abou query 1, 2 , and 3. In additio

n, query 4 and 5 are related to the recursive o

r the local type negative access control rules.

Thus, access about query 4 and 5 is denied an

d conventional security models and proposed S

uggested Model can support access control abo

u query 4 and 5. However, in case of query 6,

7, and 8, these queries are related to access co

ntrol rules considering XML tree level. Native

XML security models and relational DB-based

security models cannot define access control ru

les as the Suggested Model. Therefore, native

XML security models and relational DB-based

security models cannot support access control

processing about the given user queries.

5. Conclusion

In this paper, we suggested the RDB-based

XML access control model considering XML tr

ee levels, Suggested Model. We envisage an X

ML data management system in which (1) use

r make XML queries against a given XML Sc

hema; (2) access control rules for XML data a

re specified in a relational database; (3) XML

data are stored into a relational database. (4)

access control process is performed considerin

g XML tree levels. The TL-BAC system sug

gested in this paper can have following contri

bution.

ü Practicality: the TL-BAC system can supp

ort more practical access control processing

by using relational database, still widely us

ed, for storing XML data.

ü Stability: through the TL-BAC system ado

pt RDB access control techniques, already r

esearched and practically used, to XML acc

ess control, the TL-BAC system guarantee

s better stability than conventional XML ac

cess control models.

ü Performance: because the TL-BAC system

stores XML data into the relational databas

e, when user queries are given, we do not

need to load all of XML documents. In add

ition, because XML data, XML access cont

rol rules, and user query are stored into th

e relational database with similar storage s

chema, processing performance for query pr

ocessing is better than conventional XML a

ccess control models

ü XML Tree Level-based Access Control: Th

rough adoption of concept about XML tree

levels, the TL-BAC system can support m

ore detail access control that conventional r

ecursive type or local type access control r

ules cannot support.

As a future works, we need to perform the

experiment with practical XML data in comme

rcial XML database.

144 디지털콘텐츠학회 논문지 제10권 제1호 (2009. 3)

References

[1] T. Bray et al., (Eds), Extensible Markup Language

(XML) Version 1.0, W3C Recommendation, Octobe

r, 2000.

[2] E. Damiani et al., A Fine-Grained Access Control

System for XML Documents, ACM Trans. On Infor

mation System Security (TIS-SEC), Vol. 5, No. 2,

May 2002.

[3] E. Damiani et al., Design and Implementation of an

Access Control Processor for XML Document, Com

puter Netowkrs, Vol. 33, No. 6, June 2000.

[4] E. Bertino et al., Secure and Selective Dissemination

of XML Documents, IEEE Trans. On information

and System Security (TISSEC), Vol. 5, No. 3, Augu

st 2002.

[5] S. Godik and T. Moses (Eds), eXtensible Access Con

trol Markup Language (XACML) Version 1.0, OASI

S Specification Set, February 2003, http://www.oasi

s-open.org/ committees/xacml/repository.

[6] U.M.Mbaanaso et al., Privacy Preserving Trust Auth

orization Framework Using XACML, International

Symposium on a World of Wireless, Mobile and Mul

timedia Networks (WoWMoM 06), Buffalo, New Yo

rk, June, 2006.

[7] K.L. Tan et al., Access Control of XML Documents

in Relational Database Systems, Int’l Conf. on Intern

et Computing (ICIC 01), Las Vegas, NV, June 2001.

[8] J. Jeon et al., Filter XPath Expressions for XML Acce

ss Control, Computers & Security, 23, 2004

[9] B. Luo et al., Pragmatic XML Access Control using

Off-the-Shelf RDBMS, 12th European Symposium

On Research In Computer Security (ESORICS 200

7), Dresden, Germany, September 2007.

[10] B. Luo et al., QFilter: fine-grained run-time XML

access control via NFA-based query rewriting, Inte

rnational Conference on Information and Knowledge

Management (CIKM 2004), Washington, DC, USA,

November 2004.

[11] C. Byun et al., An Efficient Query-based XML Acce

ss Control Enforcement Mechanism, KIISE Journal:

Database, Vol. 34, No. 1, February 2007.

[12] P. Samarati et al., An Authorization Model for a

Distributed Hypertext System, IEEE Trans. On Kno

wledge and Data Engineering (TKDE), Vol. 8, No.

4, August 1996.

[13] M. Kudo et al., XML Document Security Based on

Provisional Authorization, ACM Conf. on Computer

and Communications Security (CCS), Athens, Greec

e, November 2000.

[14] I. Fundulaki et al., Specifying Access Control Policie

s for XML Documents with XPath, ACM Symposiu

m on Access Control Models and Technologies (SS

ACMAT), Yorktown Heights, US, June 2004.

[15] E. Damiani et al., Securing XML Document, 7th Inte

rnational Conference on Extending Database Techn

ology (EDBT 2000), Konstanz, Germany, March 200

0.

[16] Y. Xiao et al., Security-Conscious XML Indexing,

International Conference on Database Systems for

Advanced Applications (DASFAA 07), Bangkok, T

hailand, April 2007.

[17] M. Jiang et al., Integration and Efficient Lookup of

Compressed XML Accessibility Maps, IEEE Trans.

On Knowledge and Data Engineering (TKDE), Vol.

17, No. 7, July 2005.

[18] W. Fan et al., Secure XML Querying with Security

Views, ACM SIGMOD, Paris, France, June 2004.

[19] M. Murata et al., XML Access Control Using Static

Analysis, ACM trans. Information Systems and Sec

urity, Vol. 9, No. 3, August 2006.

[20] N. Qi et al., Access-Condition-Table- Driven Acce

ss Control for XML Databases, 9th European Symp

osium on Research Computer Security (ESORICS

04), Sophia Antipolis, France, September 2004.

[21] N. Qi et al., XML Access Control with Policy Match

ing Tree, 10th European Symposium on Research

in Computer Security (ESORICS 05), Milan, Italy,

September 2005.

[22] S. Mohan et al., Ipac: and Interactive Approach to

Access Control for Semi-structured Data, Internatio

nal Conference on Information and Knowledge Man

agement (CIKM 05), Bremen, Germany, October 200

5.

[23] J. Kim et al., Formal Verification ofthe Value Patter

n-based Translation Algorithm, Dynamics of Conti

nuous, Discrete and Impulsive Systems (DCDIS) Se

ries B, Vol. 3, pp. 1359-1363, June 2007.

[24] J. Kim et al., Formal Verification and Quantitative

Evaluation of QP-T Algorithm, Dynamics of Contin

uous, Discrete and Impulsive Systems (DCDIS) Seri

es B, Vol. 3, pp. 1369-1373, June 2007.

XML 트리 레벨을 고려한 관계형 데이터베이스 기반의 XML 접근 제어 모델 145

정 동 원
1997년 :군산대학교 컴퓨터학과

공학사

1999년 :충북대학교 대학원 (공학

석사-전산학)

2004년 :고려대학교 대학원 (이학

박사-전산학)

2005년 : Visting Research Scholar, Pennsylvania

State Univ.

2005년～2007년 : 군산대학교 정보통계학과 전임강사

2007년～현재 : 군산대학교 정보통계학과 교수

관심분야：데이터 통합, XML　데이터베이스, XML

보안, 시멘틱 웹, 유비쿼터스 컴퓨팅, 시멘틱

센서 네트워크, 시멘틱 GIS, 시멘틱 Grid

김 진 형
2004년 :홍익대학교 컴퓨터학과

(학사)

2006년 :고려대학교 대학원 (이학

석사-전산학)

2008년 :고려대학교 대학원 (이학

박사 수료-전산학)

2008년～현재 : 고려대학교 컴퓨터정보통신연구소

관심분야：XML　데이터베이스, XML 보안, 시멘틱

웹, 유비쿼터스 컴퓨팅

백 두 권

1974년 :고려대학교 수학과 이학사

1977년 :고려대학교 대학원 (공학

석사-산업공학)

1983년 :Wayne State University

(이학석사 - 전산학)

1986년 :Wayne State University

(이학박사 - 전산학)

1986년～현재 : 고려대학교 컴퓨터전파통신공학부 교수

1989년～현재 : 한국정보과학회 이사/평의원/부회장

1991년～현재 : 한국시뮬레이션학괴 이사/감사/부회

장/회장/고문

1991년～현재 : ISO/IEC JTC1/SC32 전문위원회 위원장

1997년～1998년 : 고려대학교 정보전산원 원장

2002년～2004년 : 고려대학교 정보통신대학 학장

2003년～2004년 : 한국정보처리학회 부회장

관심분야：데이터공학, 소프트웨어공학, 모델링과 시

뮬레이션

[25] J. Kim et al., VQT: Value Cardinality and Query

Pattern-based R-Schema to XML Schema Translat

ion with Implicit Referential Integrity, Journal of Zh

ejiang University-Science A (JZUS-A), Vol. 9, No.

10, November 2008.

